BEHAVIOUR & INFORMATION TECHNOLOGY, 1992, voL. 11, No. 6, 319-328

Some surprising differences between
novice and expert errors in computerized

office work

JOCHEN PRUMPER, DIETER ZAPF, FELIX C. BRODBECK and

MICHAEL FRESE

N

Department of Psychology, University of Giessen, Otto-Behaghel-Str. 10, D-6300 Giessen, Germany

Abstract. This paper investigates the impact of different
levels of expertise on errors in human~computer interaction. In
a field study 174 clerical workers from 12 different companies
were observed during their normal office work and were
questioned on their expertise with computers. The level of
expertise was determined by () the length of time an employee
had worked with a computer (computer expertise); (b) the
number of programs s/he knew (program expertise); and (c) the
daily time s/he spent working with the computer (daily work-
time expertise). These different operationalizations of novices
and experts led to different results. In contrast to widespread
assumptions, experts did not make fewer errors than novices
(except in knowledge errors). On the other hand, experts spent
less time handling the errors than novices. A cluster analysis
produced four groups in the workforce: occasional users, fre-
quent users, beginners, and general users.

1. Introduction

In order to develop effective computer systems, it is
important to gain insight into the problems which may
arise for those using software on a daily basis in the
workplace (e.g., Frese ef al. 1987). Many studies have
shown that the character of a problem is closely related
to users’ level of expertise (e.g., Chi et al. 1988). Conse-
quently, it is profitable to analyse the different problems
arising at work for computer users with different levels

. of expertise.

1.1. Studies about expertise

The existing literature about expertise has chosen to
differentiate between novices and experts as follows:

experts have greater domain knowledge (Johnson et al.
1981, Voss and Post 1988); experts have greater ability
to organize their knowledge (Chase and Simon 1973,
deGroot 1966, Soloway et al. 1988); experts tend to
explore problems to a greater degree (Schaub and
Strohschneider 1992); experts see and represent a prob-
lem in their domain at a more fundamental level (Chi et

_al. 1981); experts tend to reflect more on their own

actions (Miyake and Norman 1979, Simon and Simon
1978); experts tend to apply exceptionally efficient
heuristic strategies (Putz-Osterloh and Lemme 1987);
and experts have more realistic ideas of potential prob-
lems (Chi et al. 1982). In addition, there is a small
number of studies about errors in human-computer
interaction which reach similar conclusions (e.g., Cuff
1980, Davis 1983, Lang et al. 1981, Wiedenbeck 1985,
Youngs 1974). Overall, these studies have proven that
experts are simply better and make less errors than
novices.

Yet there seems to be one other common result:
existing studies have concentrated formally on complex,
often artificially-created experimental situations, for
example the reconstruction of a position in a game of
chess (e.g., deGroot 1965) or a computer program (e.g.,
Vessey 1988) or the management of simulated scenarios
(e.g., Dorner 1987, Funke 1988). Obviously, these stud-
ies have shown little interest in the question of how
people cope with a daily environment dominated by
routine actions rather than complex or artificial problem
solutions.

By analysing an empirical field study from an action-
theoretical point of view, we attempt to show that
experts do not necessarily reach better results: that they
do not make fewer errors than novices.

0144-929X/92 $3.00 © 1992 Taylor & Francis Ltd. ”

320 J. Priimper et al.

1.2. Operationalization of expertise

Different studies use different empirical definitions of
experts and novices. However, the majority of studies on
novice/expert research in the field of human-computer
interaction has chosen to concentrate on laboratory
situations, comparing problem solutions found by pro-
fessors, teachers, and experienced programmers, with
those by students and less experienced programmers
(e.g., Adelson 1984, Allwood and Eliasson 1987, Barfield
1986, Bateson et al. 1987, Cooke and Schvaneveldt
1988, Shneiderman 1976, Soloway et al. 1988, Vihmalo
and Vihmalo 1988, Weiser and Shertz 1983). To our
knowledge there are hardly any novice/expert studies
concentrating on observations of people solving non-
standardized problems in their common work situation.

Thus, there are usually two criteria used for the
differentiation between novices and experts: degrees
(e.g., comparing students and teachers) and the time
spent working with a particular system (e.g., students
with a few vs. those with many courses) (of course, there
is a large overlap between degrees and time worked).
However, a review of the literature also showed that the
differentiation between novices and experts ‘has been
used to mean anything’ (Allwood 1986: 634) and that
‘there are currently no well-established methods for
determining programmer expertise’ (Vessey 1988: 158).
In general, there is a lack of investigations in the actual
workplace, as well as little use of multiple criteria to
differentiate different levels of expertise. Consequently,
we attempt herein to identify and analyse errors made by
novices and experts when interacting with a computer
during normal office work, and to discuss various
criteria that determine the level of expertise. The follow-
ing three criteria were considered: (a) the total length of
time that the user had worked with computers (com-
puter expertise); (b) the number of programs known
(program expertise); and (c) the amount of time working
with a computer (daily work-time expertise). Since the
subjects in the present study were all experienced in
their, work tasks, it is assumed that all subjects have

enough computer-independent task knowledge. The sug--

gested operationalizations refer to the users’ device
representations (Kieras and Polson 1985). These include
task-relevant knowledge (What task can be performed
with the computer?), computer behaviour knowledge
(How does it react?), and knowledge about the internal
structures and functions of the computer system (How
does it work?).

1.3. An action-oriented error taxonomy

To distinguish between errors made by novices and

.

experts, it is useful to differentiate specific error classes.
A taxonomy was developed for this purpose (Frese and
Zapf 1991, Zapf et al. 1992, Zapf et al. 1989). For this
article, the following distinctions are important: usabil-
ity problems! (errors and problems that result from a
mismatch between the user and the computer), ineffici-
ency problems (some detour is taken), and functionality
problems (mismatch between computer system and the
task).

According to an action-theoretic approach (Hacker
1986, Semmer and Frese 1985, Volpert 1982, 1987)
which assumes an hierarchic-sequential structure of
goals and plans, several levels of action regulation can be
differentiated. - Usability problems can occur at each
level of action regulation. The intellectual level of regu-
lation (the high level) implies that situations and prob-
lems are consciously analysed, elaborate plans are moni-
tored, and feedback is judged. Errors occur on the
intellectual level of regulation because of goals and plans
are inadequately developed. Because the plans are com-
plex or because the conditions of when to use a subplan
are not specified, a part of the action may not be done at
the right time. Finally, there may be difficulties in
interpreting feedback by the system. Errors at the intel-
lectual level of action regulation are similar to Norman’s
(1981) and Reason’s (1990) definition of mistakes.
Lower level errors can be found at the level of flexible
action patterns and at the level of sensorimotor regula-
tion. Both levels regulate routinized and highly practised
actions. The level of flexible action patterns implies that
relatively reliable structures are used which can be
changed flexibly. Errors at this level occur for example,
when the correct action is executed in the wrong situa-
tion or some sign or signal is overlooked. At the sensori-
motor level stereotypical, routinized, and automatic
sequences of movements are regulated without con-
scious attention, e.g., typing errors or incorrect move-
ments with the mouse. Errors at these levels correspond
to the definition of action slips (Norman 1981, Reason
1979, 1990). In addition, there is the knowledge base for
regulation which provides the material used to regulate
actions. Knowledge errors may appear because of infor-
mation déficits or misconceived information, for
example, not knowing a particular command, the mean-

1The term wusability is used to mean many different things
(Booth 1989). We use the term in a narrower sense than, e.g.,
Shackel (1986), whose concept comprises effectiveness, learn-
ability, flexiblity, and attitude, and thus includes aspects we
would subsume to functionality (namely the question whether
the functions of a system allow to attain a certain goal).

Novice and expert errors 321

ing of a particular function key, etc. (for details, see
Frese and Zapf 1991, Zapf et al. 1989, 1992).2

There are two causes for inefficiency: inefficiency due
to lack of knowledge and inefficiency due to habit (Zapf
et al. 1989). The former implies that the user follows an
inefficient strategy because he or she does not know a
better way. Inefficiency due to habit means that the
person habitually uses inefficient routines, although he
or she knows that there are more efficient ways. The
difference between knowledge errors and inefficiency
due to lack of knowledge is that the latter allows the goal
to be achieved without any correction, however a shorter
route to goal attainment is available. In contrast, knowl-
edge errors can have three consequences: (1) the user can
not achieve the goal at all; (2) the user can only achieve
the goal by external support: or (3) the user has to redo
an action step to reach the goal. Novices should be more
inefficient than experts in the knowledge subcategory of
inefficiency.

Functionality problems, as we use the term, comprise
both soft and hardware problems. They imply that
computer devices do not support the users’ goals in an
appropriate way. Functionality problems can be classi-
fied into different categories: action blockade (the user
either has to give up or has to change a goal), action
repetition (a part of one’s work is lost and needs to be
redone), action interruption (the user is interrupted by
the system, but is able—usually after some additional
work—to continue), and action detour (the user knows
the weaknesses of the software and compensates them).
We did not develop abstract suppositions regarding
functionality, but were interested in determining empiri-
cally the occurrence of functionality problems with
novices and experts. :

1.4. Errors of novices and experts

The taxonomy allows us to develop hypotheses regard-
ing different types of errors depending on the operation-
alization of expertise. People who know many programs
(program experts) probably have a good general mental
model of computers and programs. This may reduce
knowledge errors. However, those experts have to deal
with many incompatible programs. Since they are better
acquainted with some programs than with others—and
have routinized their actions—they will apply their

2In addition, errors can also be differentiated according to
different stages of the action process (Frese and Stewart 1984,
Norman 1984, 1986) which was done by us as well (Frese and
Zapf 1991, Zapf et al. 1989, 1990). However, theory just offers
us hypotheses for the levels of regulation and not for the action
process. Therefore, the analysis collapsed errors according to
the levels of action regulation.

routines incorrectly and thus make more habit errors
(errors on the lower levels of regulation). Their well-
practised actions which successfully apply to one system
may turn out to be wrong for another one.

The other operationalization of expertise—defined as
the length of time since starting to learn to use a
computer (computer expertise}—may imply similar
hypotheses.

Action regulation for a particular task changes with
increasing experience (Frese and Altmann 1989, Frese
and Stewart 1984). The more experienced somebody is,
the more parts of a task he or she will carry out routinely.
This implies that more actions are regulated at the lower
levels. Therefore, the chance increases to commit errors
these levels. Similarly, Lewis and Norman (1986) argue
that the highly practised, automated behaviour of the
expert leads to a lack of focused attention. This increases
the likelihood of some forms of slips which correspond
with errors on lower levels of regulation. Program ex-
perts regulate more actions on lower levels than novices.

"Thus, they should show more errors on lower levels of

regulation.

Finally, expertise defined by daily length of computer
use, may have different implications. For people who
work long hours with a special program, it is important
to be efficient. For them daily inefficiency leads to a
higher loss of time than for a person who just works

_briefly with the computer. Therefore, they might be

particularly motivated to increase their knowledge and
their efficiency. Thus experts (in terms of daily computer
time) should be more efficient than daily work-time
novices.

While we have developed different hypotheses for the
different groups of novices and experts regarding to
types of errors, we expect a uniform picture for error-
handling time. Error-handling time (that is, the time
elapsed from the detection of the error to the successful
correction or abandonment of correction should be
shorter for experts, regardless of how they are operation-
alized, since they have more experience in using the
programs than novices.

2. Method
2.1. Subjects

Two hundred and fifty-nine users of 16 different
software programs from 12 companies in the Federal
Republic of Germany comprising 16 different depart-
ments and seven small firms participated in our study.
The size of the companies analysed ranged from the
office department of a large public administration de-
partment with 260 employees to a small brokerage firm

322 J. Priimper et al. -~

operated by two family members. The array of work
tasks ranged from low level data entry, text editing,
graphic design, and electronic mailing, to managerial
tasks. An essential component of each subject’s job was
computer work (average percentage of daily computer
work was 50-60%). The average time of employment in
the company was 35 years, the average experience with
computers was 1-2 years, and on average 1-8 computer
programs were known. The age of the subjects ranged
from 16 to 60 years, average age was 31 years; 72-9%
were female. The subjects were observed in the office
and were asked to fill out a questionnaire. However, not
all of the 259 subjects could be observed and not all
those observed returned the questionnaire. OQur report is
based upon observation data from 198 subjects, ques-
tionnaire data from 232 subjects, and 174 subjects with
both sets of data.

2.2. Measures and procedures

The subjects were observed, interviewed and given a
standardized questionnaire which asked for demo-
graphic data, work characteristics, and their level of
computer expertise.

The observers participated in a three-day training
session which included a discussion of the theory and
procedure, as well as an evaluation of a set of errors
which we had collected previously. Observers practised
for one and a half days, and observed an experienced
observer before working with the subjects.

The subjects were observed during their routine work
process with the computer. The observation period
lasted for 2 h. The observer sat next to or behind the
subject in order to see both the screen and the keyboard.
A structured protocol sheet was used to record and
classify all errors. Each error was described briefly.
Based on these descriptions, the errors were rerated by
two raters. Interrater agreement for these two raters was
74.7%. This is equivalent to Cohen’s (1960) kappa
coefficient of 0.73. Only those errors the reraters agreed
upon were included (rn=1306).)

Error-handling time is defined as the time it takes to
correct or abandon correcting an error after it has been
detected. German companies did not allow the use of
stop watches for time-keeping. Therefore, error handling
time was recorded with a rough observer estimate on a
five-point scale: immediately (coded: 15 s), to 2 min
(coded: 1 min), to 5 min (coded: 4 min), to 10 min
(coded: 8 min) and more than 10 min (coded: 12 min).
Actually, the 10 min and above category leads to a
conservative estimate of the total handling time, because
in some cases subjects actually needed more than 30
min. To assess the reliability of error-handling time, a

small study with 23 subjects was carried out with two
observers (Priimper 1991a). Since the ratings of error
handling time were ordinal data, a Kendall’s (1948) tau
of 0-69 could be computed.

As an a priori classification, we operationalized differ-
ent kinds of novices/experts by a cut-off point on their
answers to the following questions: (a) ‘How long ago did
you start working with a computer for the very first
time? (called ‘computer expertise’). The cut-off point
was one year; i.e., ‘computer novices’ had up to one year
computer experience, ‘computer experts’ more than one;
(b) ‘How many computer programs do you work with?’
(‘program expertise’) users who knew only one computer

program were considered ‘program novices’; (¢) ‘How

many percentage of your working hours do you spend
working with a computer?” (‘daily work-time expertise’).
Those who spent less than 50% of their time working
with the computer were classified as ‘daily work-time
novices’, the others as experts.

3. Results and discussion

3.1 Results of the a priori classification of novices and
experts

Table 1 shows the results for the three different
novice/expert groups. Commonsense suggests that
novices make more errors than experts. However, our
results suggest otherwise. There were no significant dif-
ferences between computer novices and experts in the
total number of errors (usability problems, functionality
problems, and inefficiencies). Program experts even
made significantly more errors than novices. On the
other hand, there was a significant higher number of
errors in daily work-time novices. Invariably, this leads
to two conclusions. First, commonsense, is sometimes
wrong; and second, the answer to how many errors are
made by experts or novices strongly depends on which
criterion is used for defining experts and novices.

In line with our hypotheses, daily work-time novices
made significantly more errors on the knowledge base
for regulation and computer novices made significantly
more errors on the knowledge base for regulation, and
significantly more inefficiencies due to lack of knowledge
then experts. Again, the choice of criterion was impor-
tant. In contrast to computer experts and daily work-
time experts, program experts made significantly more
errors not only on the higher level but on lower levels of

3The cut-off points might seem to be a bit severe. However,
additional analyses were carried out with trichotomized
samples leading to similar results (Priimper 1991b).

Novice and expert errors 323

Table I. Average number of errors per computer hour for novices and experts concerning computer, program, and daily work-time

expertise.
Computer Program Daily Work-Time
Novices Experts Novices Experts Novices Experts
n=51 n=123 n=95 n=79 n=_82 n=91

Total number of errors 5-05 4-64 3.87 Fkk 5-83 5-37 *x 4.07
Usability problems

Errors in the knowledge

base of regulation 0-61 * 0-34 0-39 0-45 0-52 * 033

Errors on higher

level of regulation 0-79 0-81 0-64 * 1-00 0-79 0-82

Errors on lower

levels of regulation 212 1-89 1-55 ook 2-44 2-05 1-88
Inefficiency

Lack of knowledge 0-77 i 0-22 0-47 0-28 0-47 0-31

Inefficiency out of habit 0-30 0-31 025 0-37 0-37 0-17
Functionality problems 0-48 *x 1-08 0-58 * 1-29 1-18 * 0-56

Note: ¥**p<0-001; **p<<0-01; *p<<0-05 (one-tailed ¢ test).

Table 2. Error handling time for novices and experts (minutes per error).

Computer Program Daily Work-Time
Novices Experts Novices Experts Novices Experts
Total error handling time 2-31 * 1.51 1.72 1-79 2-09 * 1-46
n=48 n=111 n=385 n=174 n=75 n=383
Handling time for usability problems

Errors in the knowledge 2-82 * 1-65 2-06 2-19 2-39 1-74
base of regulation n=22 n=33 n=30 n=25 n=32 n=23
Errors on higher 1-98 1-65 1-64 1-87 2-34 ok 1-22
level of regulation n=28 n=62 n=46 n=44 n=43 n=47
Errors on lower 0.76 * 0.51 0.60 0.56 0.71 ok 0.47
levels of regulation n=41 n=102 n=73 n=170 n=66 n=75
Handling Time for 479 272 3-69 2:75 3:54 315
Sfunctionality problems n=10 n=29 n=21 n=18 n=16 n=22

Note: Error categories that needed no error handling (inefficiency and action detours) are excluded from the analysis.
The different ns in the separate error categories are due to the fact that error handling time per error is the result of number of errors
per person divided by error error handling time per person. In case of no error event this would mean a division by 0. In this instances

the subject is excluded from the analysis.
Note: **p<<0-01; *p<0-05 (one-tailed ¢ test).

regulation as well. Thus, learning produced a reduction,
as well as an increase of errors depending on the kind of
error and the way expertise is operationalized. Learning
increases the knowledge of the system and the capability
to apply this knowledge to the task. This leads to a
reduction of knowledge errors and errors at the intellec-
tual level of regulation. However, by growing experience
the routinized actions increase. This leads to a higher
chance of routinized errors at the lower levels of action
regulation. Apparently, errors in routinized actions were
independent of how long one has worked with a computer
in general and of how long one has worked with the
computer on a daily basis. However, the number of errors
is dependent on the amount of programs somebody
knows. The reason for this lies in the incompatibilities

between programs; routinizing the commands for one
leads to more problems with the next program.

Computer and program experts had significantly more
functionality problems than computer and program nov-
ices. Experts probably have to cope with problems of
higher complexity and, therefore, pushed the limits of
their software, producing more functionality problems,
which develop as a result of the mismatch between the
computer system and the actual work task. In contrast,
computer and program novices performed simple tasks
which were well covered by the standard features of the
software. However, the results are not completely consis-
tent because daily work-time novices had significantly
more functionality problems than daily work-time ex-
perts.

324

J. Priimper et al.

Table 3. Four cluster solutions for ‘computer expertise’, ‘program expertise’, and ‘daily work-time expertise’.

Occasional Frequent Beginning General
Users Users Users Users
n=74 n=66 n=27 n=6
Computer Expertise 2-3 years 2-3 years 3-6 month 2-3 years
Program Expertise 1-9 1-6 1-2 52
Daily Work-Time Expertise 20-30% 80-90% 50-60% 40-50%

Table 2 presents quite a cohesive picture on error-
handling time. Whenever there is a significant differ-
ence, the novices, regardless of operationalizations,
needed more time to correct errors.

In summary, our hypotheses were partly confirmed.
The overall picture concerning the number of errors
depends very much on the specific operationalization of
experts and novices. Computer novices made more
knowledge errors and were less efficient due to lack of
knowledge. A similar picture evolved for daily work-
time novices. As predicted, there were more errors on
lower levels for program experts. Functionality problems
were higher in computer and program experts, but this
was not true for daily work-time experts.

In contrast, the picture regarding error-handling time is
much clearer and confirms our hypothesis. Novicesalways
needed more time to handleerrors thanexperts, regardless
of the operationalization of novices and experts.

3.2 Results of the cluster analysis

Up to this point, we have been concerned with a priori
operationalizations of novice and expert status. This
does not yet tell us anything about the existence of
natural groupings within the workforce. One could, for
example, argue that those people who knew many pro-
grams, probably have also worked with a computer fora
longer period of time and for a longer time each day than
computer novices. In order to find out, which empirical

groupings appear at work, we established a cluster analy-.

sis with the same three variables computer expertise,
program expertise and daily work-time expertise. Using
the average linkage between groups method’ the follow-
ing result emerged (see table 3):

The largest group consisted of employees who had 2-3

4 Actually we performed an analysis of variance to find out
whether there were any interactions for the different operation-
alizations of novices/experts. However, there was only one
significant interaction which suggests to be a chance finding.

5 The ‘average linkage between groups method’, often called
UPGMA (unweighted pair-group method using arithmetic
averages) was preferred, because it differs from the linkage
methods in that it uses information about all pairs of distances,
not just the nearest or the furthest (see Anderberg 1973).

years computer experience, knew 1-9 computer pro-
grams on average and spent 20-30% of their daily
working time with the computer. They had a fairly long
computer experience, their computer knowledge was
relatively specific and they did not spend much work
time with the computer on a daily basis. We called this
group occasional users.

The second group also had 2-3 years experience and
they knew 1-6 computer programs on average. However,
they were different from the occasional users in that they
spent more time working with the computer on a daily
basis than any other group (80-90%). This group was
called frequent users.

The third group knew only 1-2 computer programs on
average. At the same time they spent 50-60% of their
daily work time with the computer. They differed from
all the other groups in that they had used the computer
3-6 months. We called this group beginning users.

The smallest group consisted of employees who also
had 2-3 years computer experience and spent 40-50% of
their daily working time with the computer. However,
they knew many more computer programs than any
other group (5-2 on average). This group can be called
general users. ,

Generalizing this natural separation, we can define
four groups of users in the computerized office. Group
comparisons were made with Scheffé’s Multiple Range
Test (p<0-01):

e The occasional user group is the one, which has
significantly less daily work-time experience than
any other group.

o The frequent user group is the one, which has
significantly more daily work-time experience than
any other group.

o The beginning user group is the one, which has
significantly less computer experience than any
other group, but significantly more daily work-time
experience than the occasional user group.

o The general user group is the one, which has signifi-
cantly more program experience than any other
group.

Table 4 shows the results for occasional, frequent, begin-
ning and general users concerning usability problems,
inefficiencies and functionality problems. Group com-

Novice and expert errors 325

Table 4. Analysis of variance for number of errors per computer hour for occasional-, frequent-, beginning- and general users.

Occasional Frequent Beginning General
Users Users Users Users F
n=74 n=66 n=27 n=6 Ratio
Total number of errors 5-05 3-80 5-30 7-21 2.-81*
Usability problem
Errors in the knowledge
base of regulation 0-45 0-23 0-77 0-56 3.77%*
Errors on higher
level of regulation 068 0-70 0-98 2:70 6-99*%*
Errors on lower
levels of regulation 193 1-94 1.94 273 0-34
Inefficiency -
Lack of knowledge 0-30 0-24 1-01 0-24 o 3-80%*
Inefficiency out of habit 0-34 0-15 0-26 0-54 0-85
Functionality problems 1-36 0:54 0-34 0-45 2-19

Note. ***p<<0-001; **p<<0-01; *p<<0-05.

Table 5. Analysis of variance for error handling time per error for occasional-, frequent-, beginning- and general users
(minutes per error).

Occasional

Frequent Beginning General F
Users Users Users Users Ratio
Total error handling time 2:09 1-21 2-34 1-46 1-86
n=67 b=59 n=26 n=6
Handling time for usability problems
Errors in the knowledge 1-91 1-41 312 2-67 1-33
base of regulation n=25 n=14 n=14 n=2
Errors on higher 2:29 1-10 2:13 1-18 3-06*
level of regulation n=35 n=33 n=16 n=6
Errors on lower 065 0-47 0-74 0-37 1-49
levels of regulation n=359 nf=355 n=22 n=6
Handling Time for 443 2-41 3.53 0-50 1-19
Junctionality problems n=17 n=13 n=>; n=3

Note: Error categories that needed no error handling (inefficiency and action detours) are excluded from the analysis.
The different ns in the separate error categories are due to the fact that error handling time per error is the result of
number of errors per person divided by error error handling time per person. In case of no error event this would mean a
division by 0. In this instances the subject is excluded from the analysis.

*p<0-05.

parisons were made with the Duncan’s Multiple Range
Test (p<<0-05). :

The most interesting results were that the general
users, in spite of their expert status, made the most
errors and that the frequent users made the fewest errors
in most cases. Beginning users had the most knowledge
problems (knowledge errors and inefficiency due to
knowledge) and occasional users the most functionality
problems. General users made significantly more overall
errors than frequent users. Concerning usability prob-
lems, beginning users made significantly more knowl-
edge errors than frequent users. General users made
significantly more errors at the higher level of regulation
than the other groups. Beginning users are significantly
more inefficient because of a lack of knowledge than the
others.

Table 5 presents the results on error-handling time.
Here, significant differences only appeared within the
field of the higher level of regulation. In general, begin-
ning users seem to need the most time to handle errors,
frequent users the least by comparison.

In summary, the cluster analysis has shown three
important results. First, the a priori classification with
three classes used before is not redundant. There is not
just one dimension with experts on the one hand, who
use computers for many years, who know a lot of
programs and work with them for many hours every day,
and novices on the other hand who only have recently
begun to work with computers, know one program and
use it only occasionally. This means, that the category of
casual users (e.g. Cuff 1980) is not just an intermediate
stage between novices and experts.

326 . J. Priimper et al.

Second, there was a large group of frequent users who
habitually used just one program, have learned this
program a long time ago, and used it quite a long time
each day. They probably did not have a good general
model of computers. They could actively work with one
specific program very well. Because of their little general
understanding, they often might had greater difficulties
transferring to a second software system, as some of our
qualitative observations showed.

Third, the frequent users proved to make the least
amount of errors.

4. Discussion

Commonsense suggests that the overall number of
errors would be higher for novices. This was not the case
in our research. In fact, program experts made signifi-
cantly more overall errors than the program novices.
Apparently, errors per se are not an indication of a
novice status. Thus, one has to distinguish different
operationalizations of novices and experts as well as
different error types.

While there were differences in the number of errors
depending upon operationalization, the picture for error
handling was quite clear and relatively uniform—
novices showed significantly longer error-handling times
than experts. They obviously had less skills to cope
efficiently with errors.

The data also showed that it pays off to develop a
differentiated taxonomy of errors. For example, pro-
gram experts made more errors on the lower levels of
regulation than program novices because experts have
developed more habits that turn out to cause some
trouble when inconsistent software was used. This result
fits well with the cognitive literature which shows that
experts have more abstract knowledge and may, there-
fore, commit errors in concrete situations (Adelson
1984). :

Generally, computer and program experts have to deal
with more functionality problems than novices. One
possible reason might be that experts push the limits of
the system because more problematic areas of the soft-
. ware are used.)

From a methodological point of view the question
may arise whether the date are trivial because the
observers of our study got some training in understand-
ing the background theories and the application of the
error taxonomy. However, this is not very likely. The
observers were trained to apply the error taxonomy but
they did not know the hypotheses regarding novices and
experts. They also could not always be sure whether the
persons they observed were experts or novices, because

these data were collected by the standardized question-
naire after the observation period.

The practical implications of these results are not only
interesting, but also potentially controversial. The data
of this study suggest that practice can achieve only very
specific reductions in errors. Only errors in the knowl-
edge base for regulation and inefficiencies due to lack of
knowledge are reduced with longer computer experi-
ence. This gain in competence, however, is off-set by
other errors.

We think that the data fit nicely with our reasoning on
the concept of error management (Frese and Altmann
1989, Frese et al. 1991). Traditionally, the main empha-
sis has been to reduce the number of errors rather than
to facilitate error management. Expertise does not re-
duce errors per se (except knowledge errors). So why
should this be the exclusive goal? The error management
strategy suggests that the goal of software design and
training should not be so much to reduce the number of
errors per se, but to reduce the negative effects of errors.
One negative effect of errors is the time spent handling
them. Expertise does reduce error-handling time, thus
the most important aspects of error management are
becoming aware of potential errors, being able to inter-
pret errors, knowing strategies to recover from them,
learning from one’s errors, and developing good strat-
egies of error diagnosis.

The suggested concept of error management is useful
for all user groups, because the data showed that in many
cases it is not just the pitiable novice but also the highly
respectable expert who gets into trouble in the real
computerized office world.

Acknowledgement

This contribution was produced as part of the research
project FAUST (a German acronym of ‘Error analysis
for the investigation of software and training’). FAUST
was supported by a grant from the Humanization of
Work Fund of the Ministry of Research and Tech-
nology of the Federal Republic of Germany to M. Frese
(01 HK 806 7) in collaboration with Technischer Uber-
wachungsverein (TUV), Munich.

References

ADELSON, B. 1981, Problem-solving and the development of
abstract categories in programming languages, Memory and
Cognition, 9, 422-433,

ADELSON, B. 1984, When novices surpass experts: the difficulty
of a task may increase with expertise, Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, 10,
483-495.

Novice and expert errors 327

ArLwoop C. M. 1986, Novices on the computer: a review of the
literature, International Journal of Man~Machine Studies,
25, 633-658.

ANDERBERG, M. J. 1973, Cluster Analysis for Applications (Aca-
demic Press, New York).

ANDERSON, J. R. 1982, Acquisition of cognitive skill, Psycholo-
gical Review, 89, 369-406.

BarriELD, W. 1986, Expert-novice differences for software:
implications for problem solving and knowledge acquisition,
Behaviour and Information Technology, 5, 15-29.

BATESON, A. G., ALEXANDER, R. A. and MurpHY, M. D. 1987,
Cognitive processing differences between novice and expert
computer programmers, International Journal of Man-
Machine Studies, 26, 649-660.

BONAR, J. and SoLoway, E. 1985, Pre-programming knowledge:
a major source of misconceptions in novice programmers,
Human-Computer Interaction, 1, 133-161.

BootH, P. A. 1989, An Introduction to Human-Computer
Interaction (Lawrence Erlbaum, Hove).

CHase, W. G, and SiMoN, H. A. 1973, Perception in chess,
Cognitive Psychology, 4, 121-152.

CH1, M. T. H., FeLtovicH, P. J. and GLASER, R. 1981, Categori-
zation and representation of physics problems by experts
and novices, Cognitive Science, 5, 121-152.

CHi, M. T. H., Graser, R. and Ress, E. 1982, Expertise in
problem solving, in R. Sternberg (ed.), Advances in the
Psychology of Human Intelligence, Vol. 1 (Lawrence Erl-
baum, Hillsdale, NJ), 17-76.

CHI, M. T. H., GLASER, R. and FArr, M. J. 1988, The Nature of
Expertise (Lawrence Erlbaum, Hillsdale, NJ).

CoHEN, J. 1960, A coefficient of agreement for nominal scales,
Educational and Psychological Measurement, 20, 37-46.

Cooke, N. J. and ScHvVANEVELDT, R. W. 1988, Effects of
computer programming experience on network representa-
tions of abstract programming concepts, International Jour-
nal of Man-Machine Studies, 29, 407-427.

Curr, R. N. 1980, On casual users, International Journal of
Man-Machine Studies, 12, 163-187.

Davis, R. 1983, User error or computer error? Observations on
a statistics package, International Journal of Man-Machine
Studies, 19, 359-376.

DORNER, D. 1987, On the difficulties people have in dealing
with complexity, in J. Rasmussen, K. Duncan and J. Leplat
(eds), New Technology and Human Errors (Wiley, Chi-
chester), 97-109.

Frese, M. and StewaRrT, J. 1984, Skill learning as a concept
in life-span developmental psychology: an action theoretic
analysis, Human Development, 27, 145-162.

FRrRESE, M. and ALTMANN, A. 1989, The treatment of errors in
learning and training, in L. Brainbridge and S. A. Ruiz

" Quintanilla (eds), Developing skills with information techno-
logy (John Wiley, New York), 65-86.

Frese, M. and ZapF, D. 1991, Fehlersystematik und Fehier-
entstehung: Eine theoretische Einfiihrung, in M. Frese and
D. Zapf (eds), Fehler bei der Arbeit mit dem Computer.
Ergebnisse von Beobachtungen und Befragungen im Biiro-
bereich (Huber, Bern), 14-31.

FrEsg, M., ULich, E. and Dzioa, W. 1987, Psychological Issues
of Human-Computer Interaction in the Work-place (North-
Holland, Amsterdam).

Fresg, M., IrMER, C. and PRUMPER, J. 1991, Das Konzept
Fehlermanagement: Eine Strategie des Umgangs mit Hand-
lungsfehlern in der Mensch-Computer Interaktion, in M.
Frese, Chr. Kasten, C. Skarpelis and B. Zang-Scheucher (eds)

Software fiir die Arbeit von morgen. Bilanzen und Perspek-
tiven anwendungsorientierter Forschung (Springer-Verlag,
Berlin), 241-251.

Funke, J. 1988, Computer-simulated scenarios: a review of
studies in the FRG, Simulation & Games, 19, 277-303.

GrerF, S. and Gepica, G. 1987, A critique and empirical
investigation of the ‘one-best-way-models’ in human—com-
puter interaction, in M. Frese, E. Ulich, and W. Dzida (eds),
Psychological Issues of Human-Computer Interaction in the
Workplace (North-Holland, Amsterdam), 357-377.

GUGERTY, L. and OLson, G. M. 1986, Debugging by skilled and
novice programmers, Proceedings of the CHI '86 Conference
on Human Factors in Computing Systems (ACM, New
York).

HAcker, W. 1986, Arbeitspsychologie (Huber, Bern).

JounsoN, P. E., DuraNn, A. S., HAsSEBROCK, F., MOLLER, J. H.,
PrieTuLa, M., FeLrovicH, P. J. and Swanson, D. B. 1981,
Expertise and error in diagnostic reasoning, Cognitive Sci-
ence, 5, 135-283.

KENDALL, M. G. 1948, Rank Correlation Methods (Griffin,
London).

Kennepy, T. C. S. 1975, Some behavioural factors affecting the
training of naive users of interactive computer system,
International Journal of Man-Machine Studies, 7, 817-834.

Kieras, D. and Poison, P. 1985, An approach to the formal
analysis of user complexity, International Journal of Man-
Machine Studies, 22, 365-394.

Lang, T., LaNG, K. and AuLp, R. 1981, A longitudinal study of
computer-user behaviour in a batch environment, Interna-
tional Journal of Man-Machine Studies, 14, 251-268.

LarkiN, J. H. 1983, The role of problem representation in
physics, in D. Genter and A. L. Stevens (eds), Mental Models
(Lawrence Erlbaum, Hillsdale, NJ), 75-98.

Lewss, C. and NorMaN, D. A. 1986, Designing for error, in D.
A. Norman and S. W. Draper (eds), User-Centered System
Design (Lawrence Erlbaum, Hillsdale, NJ), 411-432.

MILLER, L. A., 1974, Programming by non-programmers, Inter-
national Journal of Man-Machine Studies, 6, 237-260.

Mivakg, N. and NormaN, D. A. 1979, To ask a question one
must know enough to know what is known, Journal of Verbal
Learning and Verbal Behavior, 18, 357-364.

NoRrMAN, D. A. 1981, Categorization of action slips, Psychologi-
cal Review, 88, 1-15.

NorMAN, D. 1984, Stages and levels in human-computer
interaction, International Journal of Man-Machine Studies,
21, 365-375.

NorMaN, D. 1986, Cognitive engineering, in D. A. Norman and
S. W. Draper (eds), User-Centered System Design (Lawrence
Erlbaum, Hillsdale, New Jersey), 31-61.

PrUMPER, J. 1991a, Die Inter-Rater-Reliabilitdt von Fehler-
beobachtungen im Feld, in M. Fese and D. Zapf (eds), Fehler
bei der Arbeit mit dem Computer. Ergebnisse von Beobach-
tungen und Befragungen im Biirobereich (Huber, Bern),
47-59.

PRUMPER, J. 1991b, Handlungsfehler und Expertise, in M. Frese
and D. Zapf (eds), Fehler bei der Arbeit mit dem Computer:
Ergebnisse von Beobachtungen und Befragungen im Biiro-
bereich (Huber, Bern), 118-130.

Putz-OsTerLOH, W. and LEMME, M. 1987, Knowledge and its
intelligent application to problem solving, The German
Journal of Psychology, 11, 286-303.

RaFAELL A. and Sutton, R. I. 1986, Word processing techno-
logy and perceptions of control among clerical workers,
Behaviour and Information Technology, 5, 31-37.

328 J. Priimper et al.

v

REeason, J. T. 1979, Actions not as planned: the price of
automation, in G. Underwood and R. Stevens (eds), Aspects
of Consciousness Vol. 1 (Academic Press, London), 76-89.

REAsoN, J. 1990, Human Error (Cambridge University Press).

ScHAuUB, H. and STROHSCHNEIDER, S. 1992, Die Auswirkungen
unterschiedlicher Problemldseerfahrung auf den Umgang
mit einem unbekannten komplexen Problem, Zeitschrift fiir
Arbeits- und Organisationspsychologie, 36, 117-126.

SEMMER, N. and Fresg, M. 1985, Action theory in clinical
psychology, in M. Frese and J. Sabini (eds), Goal-Directed
Behavior: The Concept of Action in Psychology (Lawrence
Erlbaum, Hillsdale, New Jersey), 296-310.

SHACKEL, B. 1986, Ergonomics and the design for usability, in
M. D. Harrison and A. F. Monk (eds), People and Com-
puters: Designing for Usability, Proceedings of the Second
Conference of the BCS HCI Specialist Group (Cambridge
University Press, Cambridge), 44-64.

SHNEIDERMAN, B. 1976, Exploratory experiments in program-
ming behavior, International Journal of Computer and Infor-
mation Sciences, 8, 123-143.

Smmon, D. P. and Simon, H. A. 1978, Individual differences in
solving physics problems, in R. Siegler (ed.), Children’s
Thinking: What Develops? (Lawrence Erlbaum, Hillsdale,
New Jersey), 325-348.)

Soroway, E., ApeLsoN, B. and EnrLicH, K. 1988, Knowledge
and processes in the comprehension of computer programs,
in M. T. H. Chi, R. Glaser and M. J. Farr (eds), The Nature of
Expertise (Lawrence Erlbaum, Hillsdale, New Jersey),
129-152.

SPOHRER, J. C., SoLoway, E. and PopE, E. 1985, Where the bugs
are, Proceedings of the CHI ‘85 Conference on Human
Factors in Computing Systems (San Francisco, ACM),
47-53.

Vessey, 1. 1988, Expert-novice knowledge organization: an

empirical investigation using computer program recall, Be-
haviour and Information Technology, 7, 153-171.

ViaMALO, A. and ViaMaLo, M. 1988, Utilization of subject’s
background knowledge in computer program comprehen-
sion, Zeitschrift fiir Psychologie, 196, 401-413,

VoLPERT, W. 1982, The model of the hierarchical-sequential
organization of action, in W. Hacker, W. Volpert and M.
Cranach (eds), Cognitive and Motivational Aspects of Action
(Deutscher Verlag der Wissenschaften, Berlin), 35-51.

VoLperT, W. 1987, Psychische Regulation von Arbeitstétig-
keiten, in U. Kleinbeck & J. Rutenfranz (eds), Arbeitspsycho-
logie. Enzyklopddie der Psychologie, Themenbereich D, Serie
111, Band 1 (Hogrefe, Gottingen), 1-42.

Voss, J. F. and PosT, T. A. 1988, On the solving of ill-structured
problems, in-M. T. H. Chi, R. Glaser and M. J. Farr (eds),
The Nature of Expertise (Lawrence Erlbaum, Hillsdale, New
Jersey), 261-285. :

WEISER, M. and SHErTZ, J. 1983, Programming problem repre-
sentation in novice and expert programmers, Inter-
national Journal of Man-Machine Studies, 19, 391-398.

WIEDENBECK, S. 1985, Novice—expert differences in program-
ming skills, International Journal of Man-Machine Studies,
23, 383-390.

Youngs, E. A. 1974, Human errors in programming, /nterna-
tional Journal of Man-Machine Studies, 6, 361-376.

ZAPF, D., BrRoDBECK, F. C. and PRUMPER, J. 1989, Handlungs-
orientierte Fehlertaxonomie in der Mensch—-Computer Inter-
aktion, Zeitschrift fiir Arbeits- und Organisationspsychologie,
33, 178-187.

ZArF, D., BRODBECK, F. C., FRESE, M., PETERS, M. and PRUMPER,
J. 1992, Errors in working with office computers: a first
validation of a taxonomy for observed errors in a field
setting, International Journal of Human~Computer Interac-
tion, 4, 311-339.

Quelle:
Primper, J., Zapf, D., Brodbeck, F.C. & Frese, M. (1992). Some surprising differences between novice
and expert errors in computerized office work. Behaviour & Information Technology, 11(6), 319-328.

