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Figure 1: The origin of the Kneser conjecture in the hand writing of Martin Kneser.

László Lovász’s proof of the Kneser conjecture about 25 years ago marked the beginning of the history of topological combinatorics:
applications of topological methods and theorems to problems of discrete mathematics which did not (seem to) have any connection to
topology.

With this article I want to take the op-
portunity to sketch the development of
topological proofs in discrete mathe-
matics beginning with the proof of the
Kneser conjecture about 25 years ago,
which eventually led to a new discipli-
ne: topological combinatorics.

In the beginning of the twentieth
century the discipline of combinatorial
topology already made use of combina-
torial concepts in topology, finally lea-
ding to the emergence of algebraic to-
pology. Meanwhile, discrete mathema-
tics did not make much use of tech-
niques from (algebraic) topology until
the seminal proof of the Kneser con-
jecture. This situation was going to
change in an unexpected and fascina-
ting way.

The essence of topological combina-

torics can be characterized by a sche-
me that many proofs in this field pur-
sue. If we want to solve a combinato-
rial problem by topological means we
carry out the following steps.

(1) Associate a topological
space/continuous map to the gi-
ven discrete structure such as a
graph/graph homomorphism.

(2) Establish a relationship bet-
ween suitable topological inva-
riants of the space, e.g. dimensi-
on, k-connectedness, homology
groups, etc. and the desired com-
binatorial features of the original
structure.

(3) Show that the associated space
resp. the map has the desired to-

pological properties.

Thus we are concerned with a (func-
torial) procedure, which is common-
ly used in mathematics. However, the
difference to other fields is that the
constructions have to be invented and
tailored anew for almost each indivi-
dual problem. This calls for a certain
amount of ingenuity and deeper in-
sight, in particular in steps (1) and (2)
of the above procedure.

The first proof of this kind is the
proof of the Kneser conjecture by
László Lovász. Because of its relevance
for the emergence of topological com-
binatorics, its elegance, and its 25th an-
niversary, I will sketch this proof and
report on the development of topologi-
cal combinatorics.
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Figure 2: From “Jahresbericht der DMV” 1955. Figure 3: Martin Kneser. Figure 4: László Lovász.

The Kneser conjecture and its
proof

The occupation with an article by Ir-
ving Kaplansky on quadratic forms,
from 1953, led Martin Kneser to que-
stion the behaviour of partitions of the
family of k-subsets of an n-set:

Consider the family of all
k-subsets of an n-set. It
is easy to partition this
family into n − 2k + 2
classes C1 ∪ · · · ∪ Cn−2k+2,
such that no pair of k-sets
within one class is disjoint.
Is it possible to partition the
family into n − 2k + 1 clas-
ses with the same property?

Kneser conjectured that this is not
possible! He presented his conjecture
in the “Jahresbericht der Deutschen
Mathematiker–Vereinigung” in 1955 in
the form of an exercise [6] (cf. Figure 2).

We will translate Kneser’s conjecture
into graph theory language. For that
purpose we define the Kneser graph
KGn,k in a suggestive manner: the ver-
tices are the k-subsets of an n-set and
the edges are given by pairs of disjoint
k-sets. Figure 5 shows this graph for
the parameters n = 5 and k = 2. For
example, there is an edge between the
sets {1, 2} and {3, 5} because they have
empty intersection.

The afore mentioned partitions of
the k-subsets of an n-set now corre-
spond to partitions of the vertex set of
the graph in so called colour classes. The
property that no partition set contains
a pair of disjoint k-sets now translates
into the property that no colour class
contains two vertices that are adjacent
via an edge in the graph. Such a partiti-
on is called a graph colouring. The chro-
matic number of a graph is the smallest
number of colour classes in a graph co-
louring. As mentioned above it is easy
to define a graph colouring of KGn,k

with n−2k+2 colour classes. The follo-
wing example shows 5−2·2+2 = 3 pos-
sible colour classes C1, C2, C3, which
define a colouring of KG5,2.

C1 = {{1, 2}, {1, 3}, {1, 4}, {1, 5}}

C2 = {{2, 3}, {2, 4}, {2, 5}}

C3 = {{3, 4}, {3, 5}, {4, 5}}

(The example already suggests the ge-
neral principle for a partition into n −
2k + 2 colour classes!) The Kneser con-
jecture now states that it is impossible
to colour the graph with fewer colour
classes, i.e., a lower bound of n−2k+2 for
the chromatic number of the graph KGn,k.

Twenty three years after Kneser po-
sed his problem László Lovász initia-
ted the development of topological
combinatorics with the publication of
his proof of the Kneser conjecture [7].
In the following sketch of his proof we

will make use of some topological no-
tions that will not be further explained,
but which can be found in almost any
textbook on topology, such as [11].

Lovász’ proof of the Kneser conjec-
ture pursues the scheme that we men-
tioned in the introduction. Step (1) is
based on the invention of a simplicial
complex associated with any graph G,
the so called neighbourhood complex
N (G). Simplices in the neighbourhood
complex are defined by sets of vertices
that have a common neighbour in the
graph.

As an example we consider the
graph G in Figure 6. It defines the
neighbourhood complex N (G):

N (G) = {∅, {1}, {2}, {3}, {4}, {5},

{1, 2}, {1, 3}, {1, 4}, {1, 5},

{2, 3}, {2, 5}, {3, 4},

{1, 2, 5}, {1, 3, 4}}

The inclusion maximal simplices in
N (G) are given by {1, 2, 5}, {1, 3, 4}
and {2, 3}. In the graph G they cor-
respond to the neighbourhoods of the
vertices 3, 2, 1 respectively. Figure 7
shows the topological space that reali-
zes the simplicial complex geometrical-
ly. The simplices {1, 2, 5} and {1, 3, 4}
correspond to the shaded triangles, the
simplex {2, 3} corresponds to the line
segment from 2 to 3.
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Figure 5: The familiar Petersen graph
in the guise of the Kneser graph K5,2.
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Figure 6: A graph G.

3

4

1

2

5

Figure 7: The neighbourhood complex
N (G) associated to G.

In step (2) Lovász applies the Borsuk–
Ulam theorem from topology, about
which Gian–Carlo Rota, in an essay
about Stan Ulam, once wrote:

“While chatting at the Scot-
tish Café with Borsuk, an
outstanding Warsaw topo-
logist, he [Ulam] saw in
a flash the truth of what
is now called the Borsuk–
Ulam theorem. Borsuk had
to commandeer all his tech-
nical resources to prove it.”

One of the commonly used versions
of this theorem reads:

If there exists an anti-
podal continuous map
f : S

n → S
m from the n-

sphere to the m-sphere, i.e.
a continuous map that sa-
tisfies f(−x) = −f(x) for
all x ∈ S

n, then m ≥ n.

Lovász now shows: if N (G) is to-
pologically m-connected, then G is not
(m + 2)-colourable, i.e., there is no co-
louring of G with m + 2 colour classes.
In the example of Figure 7, the neigh-
bourhood complex is 0-connected, i.e.
connected, but not 1-connected since
for example the loop 1→2→3→1 can-
not be contracted to a point. This re-
flects the fact that G is not 2-colourable
but 3-colourable.

We want to sketch this essential part
of the proof from a slightly more mo-
dern point of view (see e.g. [2] and
also quite current is [10]). An (m + 2)-
colouring of a graph G induces a graph
homomorphism G → Km+2 from G

to the complete graph Km+2 on m + 2
vertices in which all pairs of verti-
ces are connected by an edge. Such
a graph homomorphism induces a
continuous map N (G) → N (Km+2)
of topological spaces. It is easy
to verify that N (Km+2) is an m-
dimensional sphere. Now, if N (G)
is n-connected, then with the help
of the map N (G) → N (Km+2), one
can construct an antipodal continuous
map f : S

n+1 → S
m. Hence by the

Borsuk–Ulam theorem m ≥ n+1, resp.
n ≤ m − 1 as desired.

In step (3) Lovász completes his
proof by verifying that N (KGn,k) is in-
deed (n − 2k − 1)-connected.

With his proof Lovász had identified
the topological core of the problem:
the Borsuk–Ulam theorem. In the sa-
me year, 1978, a much shorter proof by
Imre Bárány followed, which employs
the Borsuk–Ulam theorem in a mo-
re direct fashion. As recently as 2002,
another substantial simplification has
been found by the American mathe-
matics student Joshua Greene [4]. For
his proof, which can be considered as
“Proof from the Book”, Greene has be-
en awarded the 2003 AMS-MAA-SIAM
Morgan prize.

Topological combinatorics

The role of the Borsuk–Ulam theorem
is not restricted to the proof of the Kne-
ser conjecture. General bounds for the
chromatic number of a graph, partiti-
on results, complexity bounds for algo-
rithmic problems, and much more, ha-
ve all been established with the help

of Borsuk–Ulam’s theorem and its ge-
neralizations. Maybe one of the most
important generalizations is a theorem
presented by Albrecht Dold [3] in 1983:

Let G be a non-trivial fi-
nite group which acts free-
ly on (well behaved) spaces
X and Y . Suppose X is
(n − 1)-connected and Y

has dimension m. If there
exists a G-equivariant map
from X to Y , then m ≥ n.

For X = S
n, Y = S

m, and G the
two–element group acting via the an-
tipodal map, we re-obtain the Borsuk–
Ulam theorem. As a matter of fact,
there is such a variety of applications
of this theorem and its generalizations
that Jiřı́ Matoušek dedicated an entire
(and entirely wonderful) book to them
with the title “Using the Borsuk–Ulam
Theorem” [8].

While Borsuk–Ulam’s theorem so far
plays the most prominent role in topo-
logical combinatorics, most standard
tools from algebraic topology have
now found their applications in combi-
natorics, from homology- and cohomo-
logy computations, characteristic clas-
ses up to spectral sequences. A recent
example is the article “Complexes of
graph homomorphisms” by Eric Bab-
son and Dmitry Kozlov [1]. Even some
methods from differential topology ha-
ve found a combinatorial analog, e.g. in
the invention of discrete Morse theory by
Robin Forman.

I want to mention a few applications
of these methods. Most notably there
are graph colouring problems. By now a
multitude of bounds for the chroma-



tic number of graphs and hypergraphs
have been established with topological
methods. Partition results of different
kinds were solved, such as the neck-
lace problem, which was solved in its
full generality in 1987 by Noga Alon.
Moreover, complexity problems, such as
the complexity of linear decision tree
algorithms and the complexity of mo-
notone graph properties in connection
with the evasiveness conjecture have be-
en addressed with techniques from to-
pological combinatorics. Another hu-
ge topic is the topology of partially or-
dered sets. In the early 80s the Swe-
dish mathematician Anders Björner in-
troduced the concept of shellability of
a partially ordered set. With a partial-
ly ordered set one can associate a sim-
plicial complex and thus a topologi-
cal space. Shellability of a partial or-
der as defined by Björner implies that
the associated topological space is a
bouquet of spheres. This combinatori-
al concept along with its topological
consequences found numerous appli-
cations, such as in the theory of Bru-
hat orders and questions in the area
of algebraic combinatorics. It should
be remarked that using the concept of
shellability, it is easy to see that the
neighbourhood complex N (KGn,k), as
it appears in Lovász’ proof of the Kne-
ser conjecture, is indeed (n − 2k − 1)-
connected.

Back to combinatorics

Ever since combinatorial theorems
were proved with topological me-
thods, the natural question followed as
to whether the topological argument
could be replaced by a combinatorial
one. A first breakthrough in this direc-
tion was made by Jiřı́ Matoušek in the
year 2000 with a combinatorial proof
of the Kneser conjecture [9]. His proof
relies on a special case of a combina-
torial lemma by A.W. Tucker which is
essentially “equivalent” to the Borsuk–
Ulam theorem. Combinatorial relatives
of the Borsuk–Ulam theorem have also
been applied in the construction of ap-
proximation algorithms in connection
with fair division problems . Moreover,
the concrete questions in discrete ma-
thematics pointed out the need for ex-
plicit methods for the computation of

homology groups and other invariants
of simplicial complexes which led to ef-
ficient programs for the computation of
these invariants.

As mentioned in the introduction,
combinatorial topology led to the for-
mation of algebraic topology. The term
“algebraic topology” was apparently
first used in a public lecture by Solo-
mon Lefschetz at Duke University in
1936 (cf. [5]):

“The assertion is often ma-
de of late that all mathe-
matics is composed of alge-
bra and topology. It is not
so widely realized that the
two subjects interpenetrate
so that we have an alge-
braic topology as well as a
topological algebra.”

The latter has now also become true
for combinatorics and topology.

Addendum: Prof. Dr. Martin Kneser
died on February 16, 2004 in Göttingen.

The EMS-Newsletter is grateful to the
editors of the Newsletter of Deutsche
Mathematiker–Vereinigung for their kind
permission to publish the author’s English
translation of this article which original-
ly appeared in Mitteilungen der DMV,
4/2003 under the title “25 Jahre Beweis
der Kneservermutung”.
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