6. Übung zur Vorlesung "Algebra"

Sommersemester 2005

Mark de Longueville Ausgabe: 26.05.05 Anja Krech Abgabe: 07.06.05

Aufgabe 1 (2 Punkte)

Ist
$$f(x) = \sum_{i=0}^{t} a_i x^i$$
, so sei $f(x^s) = \sum_{i=0}^{t} a^i x^{si}$.

Beweise folgende Aussagen für das Kreisteilungspolynom Φ_n über \mathbb{Q} :

(a) Ist p prim und $k \ge 1$, so ist

$$\Phi_{p^k}(x) = \Phi_p(x^{p^{k-1}}).$$

(b) Ist $n=p_1^{k_1}\dots p_r^{k_r}$ die Primfaktorzerlegung von n mit $k_i>0$ für alle i, dann ist

$$\Phi_n(x) = \Phi_{p_1 \cdots p_r}(x^{p_1^{k_1 - 1} \cdots p_r^{k_r - 1}}).$$

(c) Ist n ungerade, $n \geq 3$, so gilt

$$\Phi_{2n}(x) = \Phi_n(-x).$$

Zeige hierfür zunächst:

- $\cdot \ \varphi(2n) = \varphi(n),$
- · $\varphi(n)$ ist gerade für $n \geq 3$.
- (d) Ist p prim und kein Teiler von n, dann gilt

$$\Phi_{pn}(x) = \frac{\Phi_n(x^p)}{\Phi_n(x)}.$$

Eine primitive n-te Einheitswurzel über \mathbb{Q} sei mit ζ_n bezeichnet und der n-te Kreisteilungskörper $\mathbb{Q}(\zeta_n)$ sei mit \mathbb{Q}_n bezeichnet.

Aufgabe 2

Sei $m, n \ge 1, k = \text{kgV}(m, n), d = \text{ggT}(m, n)$. Zeige:

- (a) $\mathbb{Q}_m \cdot \mathbb{Q}_n = \mathbb{Q}_k$,
- (b) $\mathbb{Q}_m \cap \mathbb{Q}_n = \mathbb{Q}_d$.

Es darf die Gleichung $\varphi(m)\varphi(n)=\varphi(k)\varphi(d)$ ohne Beweis benutzt werden.

Bitte wenden!

Aufgabe 3

Sei K eine endliche Körpererweiterung und M eine unendliche Menge paarweiser teilerfremder natürlicher Zahlen.

- (a) Zeige, dass ein $m \in M$ mit $K \cap \mathbb{Q}_m = \mathbb{Q}$ existiert.
- (b) Zeige, dass ein $m \in M$ existiert, so dass $K(\zeta_m)/K$ galoissch ist und deren Galoisgruppe $\operatorname{Gal}(K(\zeta_m)/K)$ isomorph zur (multiplikativen) primen Restklassengruppe \mathbb{Z}_m^* ist.