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Problem 1 (10 points): Isomorphisms and complements Let G and
H be simple graphs. Show that G = H if and only if G = H.

Let’s denote the vertex sets by V = V(G) = V(G) and V' = V(H) = V(H).
Now G = H if and only if there exists a bijective map ¢ : V. — V' such that
w € E(Q) < p(u)p(v) € E(H),

which is equivalent to

w ¢ BE(G) <= p(u)p(v) ¢ E(H),
which in turn is equivalent to

w € B(G) <= ¢(u)p(v) € E(H).

But G is isomorphic to H if and only if there exists a bijective map ¢ : V —
V' satisfying this last condition.
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Problem 2 (10 points): Shrunk matrices Let G be a graph on n ver-
tices. For v € V(G) and e € E(G), describe the adjacency matrices of G —v
and G — e in terms of the adjacency matrix of G.

If the rows and columns of the adjacency matrix A = (a;;) of G are labeled
by the vertices vy, ...,v,, and v corresponds to v; then the adjacency matrix
of G — v is given by A with the row and column labeled by v; deleted. If
furthermore the endpoints of e are the vertices v and v; then the adjacency
matrix of G — e is given by the n x n-matrix B = (b;;) with

{aij - 11 if {7'1.7} = {kal}a
bz‘j =

a;;, otherwise.
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Problem 3 (10 points): Euler’s edges Prove or disprove: Every Eulerian
bipartite graph has an even number of edges.

Let X,Y be the bipartition of the graph. Then the number of edges is
> vex d(v), which is even since d(v) is even for every vertex v for the graph
being Eulerian.
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Problem 4 (10 points): Odd vertices Prove or disprove: If 4 and v are
the only vertices of odd degree in a graph G, then G contains a u, v-path.

The degree sum formula implies that the sum of the degrees of the vertices of
a graph is even. This certainly holds for each connected component. Hence,
the two odd degree vertices have to be in the same connected component,
and are therefore connected by a path.
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Problem 5 (10 points): In cycles Let G be a digraph with no isolated
vertices, and in which indegree equals outdegree at each vertex. Prove that
G decomposes into (directed) cycles.

Let’s do induction on the number of edges. If G has one edge, then the
graph consists of one directed loop. Now let’s suppose that G has more
than one edge. If G has a loop, remove it. Otherwise, consider a directed
path of maximal length. At the end vertex of the path there must be an-
other edge leaving the vertex, since indegree equals outdegree. This edge
connects somewhere to the path, creating a directed cycle. Remove this
cycle. By induction the remaining graph decomposes into cycles, as we have
not changed the property that indegree equals outdegree at each vertex.
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Problem 6 (10 points): Different diameters Let G be a simple graph
with diameter at least 4. Show that G has diameter at most 2.

Since diam(G) > 4 there is a pair of vertices u, v such that dg(u,v) > 4. Let
U={w e V(GQ) : dg(u,w) <1} and V = {w € V(G) : dg(v,w) < 1}. We
want to show that dg(z,y) < 2 for any pair of vertices z,y € V(G) = V(G).
Case 1: z,y are both in the complement of U or both in in the complement
of V. By symmetry it suffices only to consider z,y € V(G) \ V then zv and
vy are edges in G and z,v,y gives a path of length 2.

Case 2: One vertex in U or in V' and one vertex outside of U U V. Again,
by symmetry we can assume that z € U and y € V(G) \ (U U V). Then zv
and vy are edges in G and x, v,y gives a path of length 2.

Case 3: One vertex in U and the other in V. By symmetry we can assume
z € U and y € V. Since dg(u,v) > 4 any vertex in U has distance at least
two from any vertex in V in the graph G, and hence zy is an edge in G.

FIGURE 1. The sets U and V in G.
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Problem 7 (20 points): Simply even Prove that the number of simple
n—1

even graphs with vertex set {1,...,n} is 2("2").

Remember: a graph is called even, if every vertex has even degree, and

(”;1) is the number of 2-subsets of an (n—1)-set.

Hint: Establish a bijection to the set of all simple graphs with vertex set

{1,...,n—1}.

To construct a simple graph on the vertex set {1,...,n—1} we have a choice
of chosing any of the possible (ngl) pairs of vertices as an edge or not.
-1

Hence there are 2("2') simple graphs on the vertex set {1,...,n—1}. Let G
be a simple graph on this vertex set. We assign a new simple graph G’ on
the vertex set {1,...,n} to it as follows. Introduce the new vertex n and
connect it to all vertices of G of odd degree. Then we have the following:

(1) The graph G’ is even since G has an even number of odd degree
vertices, that were all connected to n. More detailed, the degree of
each odd vertex among {1,...,n—1} was increased by one making
it an even vertex. And n being connected to an even number of
vertices turns out to be an even vertex as well.

(2) The assignment G — G’ is a bijection from the set of all simple
graphs on the vertex set {1,...,n—1} to the set of all simple even
graphs on the vertex set {1,...,n}. The inverse map is given by
deleting the vertex n.



Problem 8 (20 points): Heavy edges

Let C be a cycle in a connected weighted graph. Let e be an edge of
maximum weight on C.

a) Prove that there is a minimum spanning tree not containing e.

b) Use this to prove that you obtain a minimum-weight spanning tree if
you iteratively delete a heaviest non-cut edge until the remaining graph is
acyclic.

a) Consider a minimum spanning tree 7. If it does not contain e we are
done. If it does contain e, consider 7' — e which must be disconnected.
This yields a partition of the vertex set of G into two sets. Since e was
contained in the cycle C, there must be another edge ¢’ of C' with endpoints
in both of these sets. Therefore T — e + ¢’ is another spanning tree. Since
e’ is an edge of the cycle C it has weight at most the weight of e, and hence
T — e+ €' is a spanning tree of weight at most the weight of 7', and hence
must be minimal.

F1GURE 2. The spanning tree 7' with a heaviest edge e.

b) As the removal of non-cut edges does not increase the number of con-
nected components the remaining graph certainly is a spanning tree. Let’s
show that the resulting graph is minimal by induction on the number k of
non-cut edges. If £k = 0 the graph itself is a tree, and hence is the minimum
spanning tree. If k& > 0 consider the first edge e chosen by the algorithm.
We know that there is a minimum spanning tree not containing e. Hence
remove e from the graph thereby reducing the number of non-cut edges. By
induction we know that the algorithm now produces a minimum spanning
tree.



