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Problem 1 (20 points): Saturation Let S be the set of vertices saturated
by a matching M in a graph G. Prove that some mazimum matching also
saturates all of S. Is this true for every maximum matching?

We show that if M is not a maximum matching, then we can construct a
matching with one more edge still saturating S. If M is not a maximum
matching, then it has an M-augmenting path P. Now exchange the edges
of P in M with the edges of P that are not in M to obtain a matching
M’ of larger size. Note that all vertices that were saturated by M are still
saturated by M'. Inductively we obtain a maximum matching saturating a
set of vertices containing S.

In general, not every maximum matching must saturate the set S, as can
be seen by considering a path with an odd number of vertices and M being
the first edge of the path.
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Problem 2 (15 points): Independence Recall that we defined a(G) to
be the maximum size of an independent set of vertices in G, and A(G) to
be the maximal degree among the vertices of G. Prove that

n(G)
25+

for every loopless graph G on n(G) vertices.

If I is an independent set of vertices of maximum size «(G), then
U{r}UN@) v eI} =V(G)
by maximality of I. Hence

G)(A(G) +1) 2 [|J{{v} UN(v) : v € I} | = [V(G)| = ().
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Problem 3 (15 points): King in the hall Let G be a bipartite X,Y -
graph. Use the Koénig-Egervary Theorem to prove Hall’s Theorem for G.

Let’s assume Hall’s condition, i.e., |[N(S)| > |S| for all S C X, holds. It
suffices to find a matching of size | X|. For that we use the Konig-Egerviry
Theorem and show that the minimal size of a vertex cover is at least | X|.
Assume that G has a minimal vertex cover C' with fewer than | X| elements.
Define A = X NC and B =Y NC, and note that |A| + |B| = |C| < | X].
Since C is a vertex cover there can be no edge from X \ A to X \ B and
hence

IN(X\A)| < [B] <|X]| - |A] = X\ 4].

A contradiction.
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Problem 4 (15 points): Too connected Let G be a connected graph with
at least three vertices. Form G’ from G by adding an edge with endpoints
z,y whenever dg(z,y) = 2 for a pair of vertices z,y € V(G). Prove that G’
is 2-connected.

Since G’ has at least three vertices G’ with one vertex deleted has at least two
vertices. Now assume that G’ \ v is disconnected for some v € V(G). Then
in particular G \ v is disconnected. There are vertices a and b in different
connected components of G’ \ v. Consider a path P in the connected graph
G from a to b. It must pass through the vertex v. Now the vertices along
the path right before and right after v must be connected by an edge in G'.
Hence we can shorten P and obtain an a,b-path in G’ \ v. Contradiction.
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Problem 5 (15 points): Internally disjoint? Prove or disprove: If P is
a u,v-path in a 2-connected graph G, then there is a u, v-path @ internally
disjoint from P.

Consider G = P, the path on four vertices. If we construct G’ as in Problem
4 we obtain the graph shown below, which then is 2-connected. If we consider
the path P indicated by the dashed line, then there is no other path with
the same endpoints internally disjoint to P.
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Problem 6 (20 points): Fan lemma Let G be a k-connected graph. Use
Menger’s theorem to prove that for any choice of U C V(G), |U| > k, and
v € V(G) \ U there are k many v-U-paths such that any two of them only
share the vertex v.

Consider the two sets U and N(v). Since G is k-connected |N(v)| > k, and
the two sets can not be separated with less than k vertices, otherwise there
would be a vertex in U and a vertex in N (v) that could be separated by less
than k vertices. Now apply Menger’s theorem to obtain a set P of k disjoint
U-N (v)-paths. Extend each of those to a path to v in the obvious way, and
we are done.



