SOLUTION FOR PROBLEM 3.7 IN CHVÁTAL'S BOOK

MARK DE LONGUEVILLE

Theorem. Let $r_{0}, r_{1}, \ldots, r_{m}$ and $s_{0}, s_{1}, \ldots, s_{m}$ be two sequences of real numbers. Then there exists a $\delta>0$ such that the following are equivalent:
(i) $\left(r_{0}, r_{1}, \ldots, r_{m}\right)<\left(s_{0}, s_{1}, \ldots, s_{m}\right)$ in the lexicographic order.
(ii) For every choice of numbers $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m}$ such that $0<\varepsilon_{1}<\delta$ and $0<$ $\varepsilon_{i}<\varepsilon_{i-1} \delta, i=2,3, \ldots, m$, the inequality

$$
r=r_{0}+r_{1} \varepsilon_{1}+\cdots+r_{m} \varepsilon_{m}<s=s_{0}+s_{1} \varepsilon_{1}+\cdots+s_{m} \varepsilon_{m}
$$

holds in the linear order of the reals.
Proof. Assume the sequences $\left(r_{0}, r_{1}, \ldots, r_{m}\right)$ and $\left(s_{0}, s_{1}, \ldots, s_{m}\right)$ differ in at least one entry, since if they are equal the assertion is obviously correct. We can also assume that $m \geq 1$, since for $m=0$ the assertion is obvious as well. Our assumptions allow us to define

$$
c:=\min _{j, r_{j} \neq s_{j}}\left|s_{j}-r_{j}\right|, \text { and } C:=\max _{j}\left|s_{j}-r_{j}\right|, \text { and } \delta:=\frac{c}{m C}
$$

Note that $0<\delta \leq 1$. We now show the following: if $r_{0}=s_{0}, r_{1}=s_{1}, \ldots, r_{k-1}=$ s_{k-1} and $r_{k}<s_{k}$ for some $k \in\{0,1, \ldots, m\}$ then $r<s$. Consider

$$
s-r=\left(s_{k}-r_{k}\right) \varepsilon_{k}+\left(s_{k+1}-r_{k+1}\right) \varepsilon_{k+1}+\cdots+\left(s_{m}-r_{m}\right) \varepsilon_{m}
$$

for some choice of $\varepsilon_{1}, \ldots, \varepsilon_{m}$ according to the restrictions stated above. This expression is positive because the following estimate holds:

$$
\begin{aligned}
\left|\left(s_{k+1}-r_{k+1}\right) \varepsilon_{k+1}+\cdots+\left(s_{m}-r_{m}\right) \varepsilon_{m}\right| & \leq\left|\left(s_{k+1}-r_{k+1}\right)\right| \varepsilon_{k+1}+\cdots+\left|\left(s_{m}-r_{m}\right)\right| \varepsilon_{m} \\
& \leq C \varepsilon_{k+1}+\cdots+C \varepsilon_{m} \\
& \leq C\left(\varepsilon_{k+1}+\cdots+\varepsilon_{m}\right) \\
& \leq C \varepsilon_{k}\left(\frac{\varepsilon_{k+1}}{\varepsilon_{k}}+\cdots+\frac{\varepsilon_{m}}{\varepsilon_{k}}\right) \\
& <C \varepsilon_{k}\left(\delta+\delta^{2}+\cdots+\delta^{m-k}\right) \\
& \leq C \varepsilon_{k} m \delta \\
& =C \varepsilon_{k} m \frac{c}{m C} \\
& =c \varepsilon_{k} \\
& \leq\left|\left(s_{k}-r_{k}\right)\right| \varepsilon_{k} .
\end{aligned}
$$

This proves the equivalence of (i) and (ii) as follows. (i) implies (ii) since we just showed that if (i) holds then $r<s$ for any choice of $\varepsilon_{1}, \ldots, \varepsilon_{m}$. If (i) does not hold then we must have that

$$
\left(s_{0}, s_{1}, \ldots, s_{m}\right)<\left(r_{0}, r_{1}, \ldots, r_{m}\right)
$$

Hence there is a $k \in\{0,1, \ldots, m\}$ such that $r_{0}=s_{0}, r_{1}=s_{1}, \ldots, r_{k-1}=s_{k-1}$ and $s_{k}<r_{k}$. But then our proof above interchanging the roles of the r_{j} 's and the s_{j} 's just shows that $s<r$.

Remark. Observe that we actually proved something more general. We don't even need to consider a fixed pair of sequences $r_{0}, r_{1}, \ldots, r_{m}$ and $s_{0}, s_{1}, \ldots, s_{m}$. For fixed $0<c \leq C$ we can consider any pair of sequences that satisfies

$$
c \leq \min _{j, r_{j} \neq s_{j}}\left|s_{j}-r_{j}\right|, \text { and } \max _{j}\left|s_{j}-r_{j}\right| \leq C
$$

and our choice of δ works. In particular, this means that we can consider sequences of rational numbers with a fixed maximal encoding length, which suffices for all practical purposes. In our case we would define the encoding length as follows. Let $r=\frac{p}{q}$ be a rational number, where p and q are relative prime integers, then let the encoding length of r be the sum of the number of digits of p plus the number of digits of q. Why does this make sense? Because the following is true (why?). Let $r_{0}, r_{1}, \ldots, r_{m}$ and $s_{0}, s_{1}, \ldots, s_{m}$ be different sequences of rational numbers of encoding length at most e. Define c and C as above. Then

$$
\frac{1}{2 m 10^{2 e}} \leq \frac{c}{m C}
$$

and therefore we can use $\delta=\frac{1}{2 m 10^{2 e}}$ as a δ that works for arbitrary sequences with encoding length bounded by e.

