Math 5711 Homework \#7; due Wednesday, March 21, 2001

Mark de Longueville

Problem 1: Linear subspaces Let V be a linear subspace of \mathbb{R}^{n}. Show that there is an $m \geq 0$, and a matrix $A \in \mathbb{R}^{m \times n}$ such that

$$
V=\left\{x \in \mathbb{R}^{n}: A \cdot x=0\right\} .
$$

What is the smallest possible m (depending on V, of course)?
Problem 2: Affine subspaces Let A be an affine subspace of \mathbb{R}^{n}, i.e., there exists a vector $a \in \mathbb{R}^{n}$ and a linear subspace V of \mathbb{R}^{n} such that $A=a+V=\{a+x: x \in V\}$. Show that there is an $m \geq 0$, a vector $b \in \mathbb{R}^{m}$, and a matrix $A \in \mathbb{R}^{m \times n}$ such that

$$
V=\left\{x \in \mathbb{R}^{n}: A \cdot x=b\right\}
$$

Problem 3: Affine spans

a) If $A=a+V$ is an affine linear subspace of \mathbb{R}^{n} where $a \in A$ and $V \subseteq \mathbb{R}^{n}$ is a linear subspace, then $A=b+V$ for any $b \in A$.
b) Show that an affine linear space that contains the zero vector $0 \in \mathbb{R}^{n}$ is a linear subspace.
c) Let $S \subseteq \mathbb{R}^{n}$ be a set. Define the affine span aff (S) by

$$
\operatorname{aff}(S)=\bigcap\{A: A \text { affine subspace, } S \subseteq A\}
$$

Show that $\operatorname{aff}(S)$ is the (inclusionwise) smallest affine subspace that contains S.

Problem 4: Dimension We defined the dimension of a polyhedron P to be the dimension of the affine span of P, where the dimension of an affine space $a+V$ was defined to be the dimension of the linear space V.

Determine the dimensions of the following polyhedra according to our definition.

- $P_{1}=\left\{x \in \mathbb{R}^{2}: x_{1} \leq 1\right\} \cap\left\{x \in \mathbb{R}^{2}: x_{2} \leq 3\right\} \cap\left\{x \in \mathbb{R}^{2}:-x_{1} \leq\right.$ $-1\} \cap\left\{x \in \mathbb{R}^{2}:-x_{2} \leq-3\right\}$
- $P_{2}=\left\{x \in \mathbb{R}^{2}:-x_{1} \leq 0\right\} \cap\left\{x \in \mathbb{R}^{2}: x_{2} \leq 1\right\} \cap\left\{x \in \mathbb{R}^{2}: x_{2}-x_{1} \leq\right.$ $-1\} \cap\left\{x \in \mathbb{R}^{2}: x_{1}-x_{2} \leq 1\right\}$
- $P_{3}=\left\{x \in \mathbb{R}^{3}: x_{1}, x_{2}, x_{3} \geq 0, x_{1}+x_{2}+x_{3} \leq 3\right\}$
- $P_{4}=\left\{x \in \mathbb{R}^{3}: x_{1}, x_{2}, x_{3} \geq 0, x_{1}+x_{2}+x_{3}=3\right\}$

Problem 5: Basic feasible solutions What are the basic feasible solutions of the following LP (compare the first midterm):

$$
\text { subject to } \quad \begin{aligned}
\max 5 x_{1}+4 x_{2}+3 x_{3} & \\
2 x_{1}+3 x_{2}+x_{3} & \leq 5 \\
3 x_{1}+4 x_{2}+2 x_{3} & \leq 8 \\
-x_{1}-2 x_{2}-x_{3} & \leq-1 \\
x_{1}, x_{2}, x_{3} & \geq 0 .
\end{aligned}
$$

Graph the polyhedron in question. Illustrate a path that the simplex algorithm possibly takes to the optimum.

