Mark de Longueville

Abgabe: bis Montag 21.11., 12:00 ins Fach von Dana Woitas, Arnimallee 3, 1.Stock.

Aufgabe 1.

Ein *Hamiltonweg* in einem gerichteten Graphen ist ein gerichteter Weg, der alle Ecken besucht. Zeige, daß sich die Kanten des vollständigen Graphen K_n so orientieren lassen, daß mindestens $\frac{n!}{2^{n-1}}$ Hamiltonwege existieren.

Aufgabe 2.

Sei G = (V, E) ein Netzwerk mit Kapazitätsfunktion $c : E \to \mathbb{R}_0^+$. Seien (S_1, T_1) und (S_2, T_2) Schnitte minimaler Kapazität. Dann ist auch $(S_1 \cup S_2, T_1 \cap T_2)$ ein Schnitt minimaler Kapazität.

Aufgabe 3.

Sei G=(V,E) ein Netzwerk mit Kapazitätsfunktion $c:E\to\mathbb{Q}_0^+$. Zeige, daß es eine Konstante $\alpha_0>0$ gibt, so daß im Augmentierende-Wege-Algorithmus der Wert des Flusses jeweils um einen Wert $\alpha\geq\alpha_0$ erhöht werden kann, sofern ein augmentierender Weg von der Quelle zur Senke existiert. Insbesondere terminiert der Algorithmus und liefert einen maximalen Fluss.

Aufgabe 4.

Zeige mit Hilfe der Flußtheorie den sogenannten Heiratssatz von P. Hall: Sei G=(V,E) ein bipartiter Graph und $V=V_1\dot{\cup}V_2$ eine Partition der Eckenmenge in Farbklassen. Es gelte die folgende Hall–Bedingung: Für jede Teilmenge $A\subseteq V_1$ gelte $|N(A)|\geq |A|$, wobei $N(A)=\{y\in V: \text{ ex. }x\in A\text{ mit }xy\in E\}$ die Menge der Nachbarn von A in G sei. Dann existiert eine Teilmenge $M\subseteq E$ von paarweise disjunkten Kanten mit $|V_1|$ vielen Elementen.

Bemerkung: Man nennt Teilmengen $M \subseteq E$ von paarweise disjunkten Kanten *Matchings*. Gesucht ist also ein Matching, so daß jede Ecke von V_1 inzident zu einer der Matchingkanten ist.