Abgabe bis Montag 12.12.2005, 12:00.

Aufgabe 1.

Zeige, daß für $n \geq 2$ die Anzahl der Permutationen von [n] mit einer geraden Anzahl von Zyklen gleich der Anzahl der Permutationen von [n] mit einer ungeraden Anzahl von Zyklen ist. Gib einerseits ein direktes Argument und eines mit Hilfe der exponentiellen erzeugenden Funktion der Stirlingzahlen erster Art:

$$\sum_{n=k}^{\infty} s(n,k) \frac{x^n}{n!} = \frac{1}{k!} (\log(1+x))^k.$$

Aufgabe 2.

Zeige die folgenden Identitäten.

(i)
$$\sum_{k=m}^{n} S(n,k)s(k,m) = \delta_{n,m} = \begin{cases} 1, \text{ falls } n=m, \\ 0, \text{ falls } n \neq m. \end{cases}$$

(ii)
$$B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!},$$

wobei B_n die Bellzahl $B_n = \sum_{k=0}^n S(n,k)$ sei.

Aufgabe 3.

Es seien $f,g \in \mathbb{C}[[x]]$ zwei formale Potenzreihen mit $[x^0]g = 0$. Zeige, daß

$$(f(g(x)))' = f'(g(x))g'(x)$$

gilt.

Aufgabe 4.

a) Es seien A eine Menge und B eine Klasse und $R\subseteq A\times B$ eine Relation, für die ein $n\in\mathbb{N}$ existiert, so daß für alle $a\in A$

$$|\{b \in B : (a,b) \in R\}| = n$$

gilt. Zeige, daß $|R| = |A| \cdot n$ gilt.

b) Für eine Permutation π sei $C(\pi)$ die Menge der Zyklen von π . Es seien nun $x, n, k \in \mathbb{N}$. Zeige, daß $c(n, k)x^k$ gleich der Anzahl der Paare (π, f) ist, bei denen π eine Permutation von [n] mit genau k Zyklen und $f: C(\pi) \to [x]$ eine beliebige Abbildung ist.