Bedingte Erwartung – Endlicher Fall

Mark de Longueville und Marc Pfetsch

1 Allgemeine Begriffe

Gegeben sei ein endlicher Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$, d. h., Ω ist eine endliche Menge, \mathcal{F} ist eine σ -Algebra und $\mathbb{P}: \mathcal{F} \to [0,1]$ ein zugehöriges Wahrscheinlichkeitsmaß. (Natürlich besteht in diesem Fall kein Unterschied zwischen σ -Algebra und Algebra.)

Seien F_1, \ldots, F_n die inklusionsminimalen nichtleeren Mengen in \mathcal{F} . Weil \mathcal{F} abgeschlossen unter Schnittmengenbildung ist, sind diese Mengen paarweise disjunkt. Weil \mathcal{F} abgeschlossen unter Komplementbildung ist, überdecken sie Ω . Damit bildet (F_1, \ldots, F_n) die von \mathcal{F} induzierte Partition von Ω . Zur Erinnerung: die Mengen F_1, \ldots, F_n sind die kleinsten nichtleeren Mengen F für welche die Wahrscheinlichkeit $\mathbb{P}(F)$ definiert ist; weiterhin kann jedes $F \in \mathcal{F}$ als Vereinigung dieser Mengen erhalten werden. Eine σ -Algebra speichert also Information: $\mathcal{F} = 2^{\Omega}$ (die Potenzmenge von Ω) heißt man "weiß Alles" (insbesondere ist $\mathbb{P}(\{\omega\})$ für jedes $\omega \in \Omega$ definiert); $\mathcal{F} = \{\varnothing, \Omega\}$ heißt man "weiß Nichts" (nur $\mathbb{P}(\varnothing) = 0$ und $\mathbb{P}(\Omega) = 1$ sind bekannt). In der Regel kann man ohne Einschränkung der Allgemeinheit annehmen, dass $|F_i| = 1$ für alle $i = 1, \ldots, n$ gilt (man identifiziert die Elemente jedes F_i miteinander). Mit dieser Annahme ist $P(\omega)$ für jedes $\omega \in \Omega$ definiert. Wie üblich schreiben wir $\mathbb{P}(\omega)$ für $\mathbb{P}(\{\omega\})$.

Sei $\mathcal{F}' \subseteq \mathcal{F}$ eine Unter- σ -Algebra von \mathcal{F} . Dann vergröbert die von \mathcal{F}' induzierte Partition (F_1, \ldots, F_m) die Partition (F_1, \ldots, F_n) ; dies bedeutet, dass jedes F_i' die Vereinigung von Mengen aus (F_1, \ldots, F_n) ist, wobei jede Menge F_i genau einmal auftritt. Insbesondere gilt:

$$\mathbb{P}(F_i') = \sum_{F_i \subseteq F_i'} \mathbb{P}(F_i),$$

wobei P weiterhin bzgl. F definiert ist.

Nun sei $X : \Omega \to \mathbb{R}$ eine Zufallsvariable für \mathcal{F} , d. h. $X^{-1}(B) \in \mathcal{F}$ für alle Borelmengen $B \subseteq \mathbb{R}$, wir sagen auch X ist \mathcal{F} -messbar.

Die folgenden beiden Abschnitte 2 und 3 vollziehen die Abschnitte 2.5 und 2.6 in "Risk-Neutral Valuation" von Bingham und Kiesel im endlichen Fall nach.

2 Bedingte Erwartungswerte

Wir nehmen im Folgenden o. E. an, dass $\mathbb{P}(\omega)$ für jedes $\omega \in \Omega$ definiert ist, d. h. die inklusionsminimalen nichtleeren Mengen von \mathcal{F} haben Kardinalität 1.

Sei X eine Zufallsvariable bzgl. \mathcal{F} . Für eine Unter- σ -Algebra $\mathcal{F}'\subseteq \mathcal{F}$ soll die bedingte Erwartung "messen" wieviel man über $\mathbb{E}(X)$ weiß, wenn man X nur bzgl. \mathcal{F}' "kennt". Dies bedeutet, dass die bedingte Erwartung Z eine Zufallsvariable bzgl. \mathcal{F}' (statt \mathcal{F}) sein soll und auf Mengen von \mathcal{F}' die gleiche Information wie $\mathbb{E}(X)$ besitzt. Also soll Z folgende Eigenschaft erfüllen:

$$\sum_{\omega \in F} X(\omega) \, \mathbb{P}(\omega) = \sum_{\omega \in F} Z(\omega) \, \mathbb{P}(\omega) \qquad \text{für alle } F \in \mathcal{F}'. \tag{*}$$

In der folgenden Definition betrachten wir einen Kandidaten für die bedingte Erwartung.

Definition. Für $\omega \in \Omega$ sei $F_{\omega} = \bigcap \{ F \in \mathcal{F}' : \omega \in F \} \in \mathcal{F}'$. Definiere die Abbildung $E(X \mid \mathcal{F}') : \Omega \to \mathbb{R}$ durch

$$\mathbb{E}(X \mid \mathcal{F}')(\omega) = \frac{1}{\mathbb{P}(F_{\omega})} \sum_{\tau \in F_{\omega}} X(\tau) \, \mathbb{P}(\tau) = \sum_{\tau \in F_{\omega}} X(\tau) \, \frac{\mathbb{P}(\tau)}{\mathbb{P}(F_{\omega})},$$

falls $\mathbb{P}(F_{\omega}) > 0$ und $\mathbb{E}(X \mid \mathcal{F}')(\omega) = X(\tau)$ für ein beliebiges $\tau \in F_{\omega}$ (unabhängig von X) anderenfalls.

Für jedes $\omega \in \Omega$ ist F_{ω} die Menge in der induzierten Partition von \mathcal{F}' , welche ω enthält.

Lemma 2.1. $\mathbb{E}(X \mid \mathcal{F}')$ ist eine Zufallsvariable bzgl. \mathcal{F}' .

Beweis. Wir müssen beweisen, dass für alle Borelmengen $B \subseteq \mathbb{R}$ gilt:

$$\mathbb{E}(X \mid \mathcal{F}')^{-1}(B) \in \mathcal{F}'.$$

Sei (F'_1, \ldots, F'_m) die induzierte Partition bzgl. \mathcal{F}' . Wenn $\omega, \omega' \in F'_i$, für ein $i \in \{1, \ldots, m\}$, dann gilt per Definition $\mathbb{E}(X \mid \mathcal{F}')(\omega) = \mathbb{E}(X \mid \mathcal{F}')(\omega')$ (weil $F_{\omega} = F_{\omega'} = F'_i$ gilt). Dies bedeutet, dass $\mathbb{E}(X \mid \mathcal{F}')^{-1}(B)$ die Vereinigung von Mengen in (F'_1, \ldots, F'_m) ist, also in \mathcal{F}' liegt (weil \mathcal{F}' eine σ -Algebra ist). \square

Proposition 2.2. Eine Zufallsvariable Z bzgl. \mathfrak{F}' erfüllt Eigenschaft (*) genau dann, wenn $Z(\omega) = \mathbb{E}(X \mid \mathfrak{F}')(\omega)$ für alle $\omega \in \Omega$ mit $\mathbb{P}(F_{\omega}) > 0$.

Beweis. Wir zeigen zunächst, dass $\mathbb{E}(X \mid \mathcal{F}')$ Eigenschaft (*) erfüllt. Sei dazu $F \in \mathcal{F}'$. Zunächst gilt (*), falls $\mathbb{P}(F) = 0$. Sei also im Folgenden $\mathbb{P}(F) > 0$.

Seien F'_1, \ldots, F'_k die Mengen der induzierten Partition bzgl. \mathcal{F} welche in F enthalten sind (F muss Vereinigung solcher Mengen sein, weil $F \in \mathcal{F}'$). Es gilt:

$$\sum_{\omega \in F} \mathbb{E}(X \mid \mathcal{F}')(\omega) \, \mathbb{P}(\omega) = \sum_{\omega \in F} \left(\frac{1}{\mathbb{P}(F_{\omega})} \sum_{\tau \in F_{\omega}} X(\tau) \, \mathbb{P}(\tau) \right) \mathbb{P}(\omega)$$

$$= \sum_{i=1}^{k} \sum_{\sigma \in F'_{i}} \left(\frac{1}{\mathbb{P}(F'_{i})} \sum_{\tau \in F'_{i}} X(\tau) \, \mathbb{P}(\tau) \right) \, \mathbb{P}(\sigma)$$

$$= \sum_{i=1}^{k} \sum_{\tau \in F'_{i}} X(\tau) \, \mathbb{P}(\tau) = \sum_{\omega \in F} X(\omega) \, \mathbb{P}(\omega),$$

womit Eigenschaft (*) gezeigt ist.

Sei nun Z eine Zufallsvariable bzgl. \mathcal{F}' und erfülle Eigenschaft (*). Für $F \in \mathcal{F}'$ gilt also:

$$\sum_{\omega \in F} Z(\omega) \, \mathbb{P}(\omega) = \sum_{\omega \in F} X(\omega) \, \mathbb{P}(\omega) = \sum_{\omega \in F} \mathbb{E}(X \, | \, \mathcal{F}')(\omega) \, \mathbb{P}(\omega).$$

Nach Lemma 2.1 ist $\mathbb{E}(X \mid \mathcal{F}')$ eine Zufallsvariable bzgl. \mathcal{F}' und daher insbesondere konstant auf allen Mengen der induzierten Partition bzgl. \mathcal{F}' ; dasselbe gilt für Z nach Voraussetzung. Wenn F eine dieser Mengen ist und $\omega \in F$, so folgt:

$$Z(\omega) \sum_{\tau \in F} \mathbb{P}(\tau) = \mathbb{E}(X \mid \mathcal{F}')(\omega) \sum_{\tau \in F} \mathbb{P}(\tau) \quad \Leftrightarrow \quad Z(\omega) = \mathbb{E}(X \mid \mathcal{F}')(\omega),$$

solange $\mathbb{P}(F) > 0$. Dies zeigt die Behauptung.

3 Eigenschaften der Bedingten Erwartung

1. $\mathfrak{F}' = \{\emptyset, \Omega\}$, d. h. wir "wissen Nichts". Dann gilt: $\mathbb{E}(X \mid \mathfrak{F}')(\omega) = \mathbb{E}(X)$ für alle $\omega \in \Omega$. Dies folgt, weil $F_{\omega} = \Omega$ und

$$\mathbb{E}(X \mid \mathcal{F}')(\omega) = \sum_{\tau \in \Omega} X(\tau) \frac{\mathbb{P}(\tau)}{\mathbb{P}(\Omega)} = \sum_{\tau \in \Omega} X(\tau) \, \mathbb{P}(\tau) = \mathbb{E}(X).$$

2. $\mathfrak{F}'=\mathfrak{F}$, d. h. wir "wissen Alles". In diesem Fall gilt: $\mathbb{E}(X\,|\,\mathfrak{F}')=X$, denn $F_{\omega}=\{\omega\}$ und damit (falls $\mathbb{P}(\omega)>0$):

$$\mathbb{E}(X \mid \mathcal{F}')(\omega) = \sum_{\tau \in \{w\}} X(\tau) \frac{\mathbb{P}(\tau)}{\mathbb{P}(\omega)} = X(\omega).$$

Für $\mathbb{P}(\omega) = 0$ gilt die Gleichung nach Konstruktion.

3. Falls X bzgl. \mathcal{F}' eine Zufallsvariable ist, dann ist X konstant auf F_{ω} . Damit gilt:

$$\mathbb{E}(X \mid \mathcal{F}')(\omega) = \sum_{\tau \in F_{\omega}} X(\tau) \frac{\mathbb{P}(\tau)}{\mathbb{P}(F_{\omega})} = X(\omega) \sum_{\tau \in F_{\omega}} \frac{\mathbb{P}(\tau)}{\mathbb{P}(F_{\omega})} = X(\omega),$$

falls $P(F_{\omega}) > 0$ ist. Für $P(F_{\omega}) = 0$ gilt dies nach Definition.

- 4. Wenn wieder X bzgl. \mathcal{F}' eine Zufallsvariable ist, dann beweist man ähnlich wie in 3, dass $\mathbb{E}(XY \mid \mathcal{F}') = X \mathbb{E}(Y \mid \mathcal{F}')$, wo Y eine Zufallsvariable (bzgl. \mathcal{F}) ist. Der Fall $\mathbb{P}(F_{\omega}) = 0$ gilt, weil die Wahl von $\tau \in F_{\omega}$ mit $\mathbb{E}(XY \mid \mathcal{F}') = X(\tau) Y(\tau)$ unabhängig von X und Y ist.
- 5. Sei $\mathcal{F}'' \subseteq \mathcal{F}'$ eine σ -Unteralgebra. Dann gilt:

$$\mathbb{E}(\mathbb{E}(X\,|\,\mathcal{F}')\,|\,\mathcal{F}'')(\omega) = \mathbb{E}(X\,|\,\mathcal{F}'')(\omega) \quad \text{für alle } \omega \in \Omega \text{ mit } \mathbb{P}(F_\omega) > 0,$$

(wobei $F_{\omega} \in \mathcal{F}''$). Denn mit Eigenschaft (*) ergibt sich für $F \in \mathcal{F}''$:

$$\sum_{\omega \in F} \mathbb{E}(\mathbb{E}(X \,|\, \mathcal{F}') \,|\, \mathcal{F}'')\, \mathbb{P}(\omega) = \sum_{\omega \in F} \mathbb{E}(X \,|\, \mathcal{F}')\, \mathbb{P}(\omega) = \sum_{\omega \in F} X(\omega)\, \mathbb{P}(\omega).$$

Also erfüllt $\mathbb{E}[\mathbb{E}(X \mid \mathcal{F}') \mid \mathcal{F}'']$ Eigenschaft (*) bzgl. \mathcal{F}'' und nach Proposition 2.2 folgt die Behauptung.

- 6. Mit den Voraussetzungen von 5 gilt: $\mathbb{E}[\mathbb{E}(X \mid \mathcal{F}'') \mid \mathcal{F}'] = \mathbb{E}[X \mid \mathcal{F}'']$. Da $\mathbb{E}(X \mid \mathcal{F}'')$ eine Zufallsvariable bzgl. \mathcal{F}'' (und damit bzgl. \mathcal{F}') ist, folgt die Behauptung mit 3.
- 7. Es gilt: $\mathbb{E}(\mathbb{E}(X \mid \mathcal{F}')) = \mathbb{E}(X)$. Dies rechnet man folgendermaßen nach, wobei (F_1, \ldots, F_m) die von \mathcal{F}' induzierte Partition sei:

$$\mathbb{E}(\mathbb{E}(X \mid \mathcal{F}')) = \sum_{\omega \in \Omega} \mathbb{E}(X \mid \mathcal{F}')(\omega) \, \mathbb{P}(\omega)$$

$$= \sum_{\omega \in \Omega} \left(\sum_{\tau \in F_{\omega}} X(\tau) \, \frac{\mathbb{P}(\tau)}{\mathbb{P}(F_{\omega})} \right) \mathbb{P}(\omega)$$

$$= \sum_{\omega \in \Omega} \frac{\mathbb{P}(\omega)}{\mathbb{P}(F_{\omega})} \left(\sum_{\tau \in F_{\omega}} X(\tau) \, \mathbb{P}(\tau) \right)$$

$$= \sum_{i=1}^{m} \left(\sum_{\omega \in F_{i}} \frac{\mathbb{P}(\omega)}{\mathbb{P}(F_{i})} \right) \left(\sum_{\tau \in F_{i}} X(\tau) \, \mathbb{P}(\tau) \right)$$

$$= \sum_{i=1}^{m} \left(\sum_{\tau \in F_{i}} X(\tau) \, \mathbb{P}(\tau) \right)$$

$$= \mathbb{E}(X).$$

3.1 Beispiel

Als Beispiel betrachten wir den Würfel, d. h.

$$Ω = {1, 2, ..., 6},$$

$$𝒯 = σ({1}, {2}, ..., {6}) = 2Ω$$

$$𝔻(ω) = \frac{1}{6} für ω ∈ Ω.$$

Als Zufallvariable wählen wir die Augenzahl, d. h. $X(\omega) = \omega$. Sei

$$\mathcal{F}' = \sigma(\text{,Augenzahl gerade}^{\circ}) = \{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}.$$

Es gilt

$$F_{\omega} = \begin{cases} \{1, 3, 5\} \cap \Omega = \{1, 3, 5\} & \omega \text{ ungerade} \\ \{2, 4, 6\} \cap \Omega = \{2, 4, 6\} & \omega \text{ gerade} \end{cases}$$

und $\mathbb{P}(F_{\omega}) = \frac{1}{2}$. Damit erhält man:

$$\mathbb{E}(X \mid \mathcal{F}')(w) = \begin{cases} 2 \cdot (\frac{1}{6} + \frac{3}{6} + \frac{5}{6}) = 3 & \omega \text{ ungerade} \\ 2 \cdot (\frac{2}{6} + \frac{4}{6} + \frac{6}{6}) = 4 & \omega \text{ gerade} \end{cases}$$

Also folgt z.B.:

$$\mathbb{E}(X \,|\, X \in \{2,4,6\}) = \mathbb{E}(X \,|\, \sigma(\{2,4,6\}))(\omega) = \mathbb{E}(X \,|\, \mathfrak{F}')(\omega) = 4,$$

wo ω irgendeine gerade Augenzahl ist.