Linear algebra and differential equations - 2243
Midterm II
November 8, 2001

Lecturer: Mark de Longueville
Teaching Assistant:
Recitation section:

Name:

$\#$	Points
1	$/ 10$
2	$/ 10$
3	$/ 20$
4	$/ 15$
5	$/ 15$
6	$/ 20$
7	$/ 10$
Sum	$/ 100$
Grade	

Problem 1 (10 points): Complex trial solutions
Use a complex-valued trial solution to determine a particular solution to the given differential equation.

$$
y^{\prime \prime}+y^{\prime}-2 y=-80 \cos 2 x
$$

Problem 2 (10 points): Spring-mass system
Determine the motion of the spring-mass system governed by the given initial value problem. State, whether the motion is under-damped, critically damped or over-damped.

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=0, y(0)=1, \frac{d y}{d t}(0)=0
$$

Problem 3 (20 points): Row echelon form, reduced row echelon form

Use elementary row operations to reduce the given matrices to row echelon form, and then to reduced row echelon form. Determine the rank of the matrices. Label each elementary row operation with the operation symbol for the operation you are performing. E.g., $P_{12}, A_{13}(4)$, or $M_{2}(-1)$.
а) $\left[\begin{array}{rrrr}5 & 4 & -1 & 6 \\ 1 & 2 & 1 & 0 \\ -3 & 1 & 4 & -7\end{array}\right]$
b) $\left[\begin{array}{cc}2+i & -1 \\ 3 & i\end{array}\right]$

Problem 4 (15 points): Systems of linear equations
Use the inverse of a matrix to determine a solution to the given system of linear equations.

$$
\begin{aligned}
3 x_{1}+4 x_{2}+5 x_{3} & =1 \\
2 x_{1}+10 x_{2}+x_{3} & =1 \\
4 x_{1}+\quad x_{2}+8 x_{3} & =1
\end{aligned}
$$

Problem 5 (15 points): Cramer's rule
Use Cramer's rule to solve the given system of linear equations.

$$
\begin{array}{r}
3 x_{1}-2 x_{2}+x_{3}=4 \\
x_{1}+x_{2}-x_{3}=2 \\
x_{1}+x_{3}=1
\end{array}
$$

Problem 6 (20 points): Vector spaces and vector subspaces
Let $V=C^{0}(I)=\{f \mid f: I \rightarrow \mathbb{R}$ a continuous function $\}$ the set of all real valued continuous functions defined on an interval $I=[a, b]$ of the reals, and $F=\mathbb{R}$ be a set of scalars. Let addition of elements in V be defined by $(f+g)(x)=f(x)+g(x)$ and scalar multiplication by $(k \cdot f)(x)=k \cdot f(x)$ for $f, g \in V, k \in F$, and $x \in I$.
a) Exemplify that V is a vector space over the reals $F=\mathbb{R}$ by showing closure under addition, closure under scalar multiplication, and any three other vector space axioms of your choice for V.
b) Show that the set $S=\{f \in V: f(a)=f(b)\}$ of all functions in V that take the same values at a and b is a vector subspace of V.

Problem 7 (10 points): Spanning vectors
Let S be the subspace of the vector space \mathbb{R}^{3} consisting of all solutions to the linear equation $2 x_{1}-x_{2}+x_{3}=0$. Determine a set of vectors that spans S.

