Linear algebra and differential equations - 2243
Midterm III
December 6, 2001

Lecturer: Mark de Longueville
Teaching Assistant:

Recitation section:

Name:

$\#$	Points
1	$/ 20$
2	$/ 15$
3	$/ 20$
4	$/ 15$
5	$/ 15$
6	$/ 15$
Sum	$/ 100$
Grade	

Problem 1 (20 points): Linear independence
a) Determine whether the given set of vectors is linearly independent or dependent in \mathbb{R}^{3}. In case of linear dependence, find a dependency relationship.

$$
\{(4,-1,2),(-1,-8,7),(3,2,-1)\} .
$$

b) Determine whether the following vectors are linearly independent in P_{3}. In case of linear dependence, find a dependency relationship.

$$
\left\{x^{2}-1, x+1, x-1\right\} .
$$

c) Use the Wronskian to determine whether the given functions are linearly independent on the interval $[0,1]$. In case of linear dependence, find a dependency relationship.

$$
\{\sin 2 x, \cos 2 x\} .
$$

Problem 2 (15 points): Bases
Determine a basis for the subspace of $M_{2}(\mathbb{R})$ spanned by

$$
\left\{\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right],\left[\begin{array}{cc}
2 & -1 \\
1 & 4
\end{array}\right],\left[\begin{array}{cc}
3 & 11 \\
14 & 6
\end{array}\right]\right\} .
$$

Problem 3 (20 points): Linear transformations
a) Determine the matrix of the given linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$.

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}-2 x_{2}+5 x_{3}, x_{2}-7 x_{3}\right) .
$$

b) Let $T: P_{2} \rightarrow P_{2}$ be the linear transformation given by

$$
T(1+x)=1-x, T(1-3 x)=4 .
$$

Determine $T(a x+b)$ for arbitrary real numbers a and b.

Problem 4 (15 points): Reflection
Determine the matrix A for the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\vec{x})=A \vec{x}$ when T is the reflection along the axis $x=-y$.

Problem 5 (15 points): Eigenvalues, and eigenvectors
Determine all eigenvalues and corresponding eigenvectors of the given matrices. Determine if they are defective or not.
a) $\left[\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right]$
b) $\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.

Problem 6 (15 points): Systems of differential equations and diagonalization
Determine a solution of the given initial value problem.

$$
\begin{aligned}
x_{1}^{\prime} & =-6 x_{1}+6 x_{2} \\
x_{2}^{\prime} & =-12 x_{1}+11 x_{2} \\
x_{1}(0) & =1 \\
x_{2}(0) & =1
\end{aligned}
$$

