Linear algebra and differential equations - 2243 Midterm III December 6, 2001

Lecturer: Mark de Longueville

Teaching Assistant:

Recitation section:

Name:

#	Points
1	/20
2	/15
3	/20
4	/15
5	/15
6	/15
Sum	/100
Grade	

Problem 1 (20 points): Linear independence

a) Determine whether the given set of vectors is linearly independent or dependent in \mathbb{R}^3 . In case of linear dependence, find a dependency relationship.

$$\{(4, -1, 2), (-1, -8, 7), (3, 2, -1)\}.$$

b) Determine whether the following vectors are linearly independent in P_3 . In case of linear dependence, find a dependency relationship.

$$\{x^2 - 1, x + 1, x - 1\}.$$

c) Use the Wronskian to determine whether the given functions are linearly independent on the interval [0, 1]. In case of linear dependence, find a dependency relationship.

$$\{\sin 2x, \cos 2x\}.$$

Problem 2 (15 points): Bases Determine a basis for the subspace of $M_2(\mathbb{R})$ spanned by

∫ [1	2]	[2	-1]	[3	11])
$\left\{ \left[3 \right] \right\}$	2,	[1	4]	14	6]

Problem 3 (20 points): Linear transformations

a) Determine the matrix of the given linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$.

$$T(x_1, x_2, x_3) = (3x_1 - 2x_2 + 5x_3, x_2 - 7x_3).$$

b) Let $T: P_2 \to P_2$ be the linear transformation given by

$$T(1+x) = 1 - x, T(1 - 3x) = 4.$$

Determine T(ax + b) for arbitrary real numbers a and b.

Problem 4 (15 points): Reflection Determine the matrix A for the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\vec{x}) = A\vec{x}$ when T is the reflection along the axis x = -y.

Problem 5 (15 points): Eigenvalues, and eigenvectors

Determine all eigenvalues and corresponding eigenvectors of the given matrices. Determine if they are defective or not.

a)
$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$$
 b) $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$.

Problem 6 (15 points): Systems of differential equations and diagonalization

Determine a solution of the given initial value problem.

$$x'_{1} = -6x_{1} + 6x_{2}$$
$$x'_{2} = -12x_{1} + 11x_{2}$$
$$x_{1}(0) = 1$$
$$x_{2}(0) = 1$$